Computational immunogenomic approaches to predict response to cancer immunotherapies

免疫疗法 计算生物学 癌症免疫疗法 医学 基因组学 癌症 免疫检查点 间质细胞 精密医学 免疫系统 生物信息学 转录组 免疫学 生物 癌症研究 基因组 内科学 病理 基因 遗传学 基因表达
作者
Venkateswar Addala,Felicity Newell,John V. Pearson,Alec Redwood,B. W. Robinson,Jenette Creaney,Nicola Waddell
出处
期刊:Nature Reviews Clinical Oncology [Nature Portfolio]
卷期号:21 (1): 28-46 被引量:33
标识
DOI:10.1038/s41571-023-00830-6
摘要

Cancer immunogenomics is an emerging field that bridges genomics and immunology. The establishment of large-scale genomic collaborative efforts along with the development of new single-cell transcriptomic techniques and multi-omics approaches have enabled characterization of the mutational and transcriptional profiles of many cancer types and helped to identify clinically actionable alterations as well as predictive and prognostic biomarkers. Researchers have developed computational approaches and machine learning algorithms to accurately obtain clinically useful information from genomic and transcriptomic sequencing data from bulk tissue or single cells and explore tumours and their microenvironment. The rapid growth in sequencing and computational approaches has resulted in the unmet need to understand their true potential and limitations in enabling improvements in the management of patients with cancer who are receiving immunotherapies. In this Review, we describe the computational approaches currently available to analyse bulk tissue and single-cell sequencing data from cancer, stromal and immune cells, as well as how best to select the most appropriate tool to address various clinical questions and, ultimately, improve patient outcomes. Identifying patients who are likely to benefit from immune-checkpoint inhibitors remains one of the major challenges in immunotherapy. Cancer immunogenomics is an emerging field that bridges genomics and immunology. The authors of this Review provide an overview of the computational approaches currently available to analyse bulk tissue and single-cell sequencing data from cancer, stromal and immune cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南风完成签到,获得积分10
3秒前
迅速的念芹完成签到 ,获得积分10
6秒前
可可应助YCH采纳,获得10
8秒前
pluto应助南风采纳,获得10
11秒前
杨怂怂完成签到 ,获得积分10
11秒前
朝闻道完成签到 ,获得积分10
13秒前
Lyn完成签到,获得积分10
15秒前
归尘应助大布采纳,获得10
15秒前
天天快乐应助Memory采纳,获得10
16秒前
17秒前
tomorrow完成签到 ,获得积分10
17秒前
20秒前
第八大洋发布了新的文献求助10
20秒前
毓冰11111完成签到,获得积分10
22秒前
鸡蛋花干夹馍完成签到,获得积分20
23秒前
future完成签到 ,获得积分10
23秒前
24秒前
NN完成签到,获得积分10
25秒前
carly完成签到 ,获得积分10
27秒前
Misea发布了新的文献求助10
28秒前
HCKACECE完成签到 ,获得积分10
33秒前
隐形曼青应助moshi采纳,获得10
36秒前
俞若枫完成签到,获得积分10
36秒前
嘻嘻哈哈完成签到 ,获得积分10
36秒前
快乐的紫寒完成签到,获得积分10
39秒前
40秒前
42秒前
Rye227应助binbin采纳,获得10
43秒前
论文急急令完成签到,获得积分10
44秒前
王欣完成签到 ,获得积分10
44秒前
完美世界应助年轻的听露采纳,获得10
45秒前
45秒前
moshi发布了新的文献求助10
46秒前
专通下水道的小趴菜完成签到 ,获得积分10
46秒前
shen发布了新的文献求助10
46秒前
ZHH完成签到,获得积分10
46秒前
51秒前
55秒前
surivial发布了新的文献求助10
55秒前
年轻的听露完成签到,获得积分10
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325186
关于积分的说明 10221815
捐赠科研通 3040328
什么是DOI,文献DOI怎么找? 1668715
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758535