Computational immunogenomic approaches to predict response to cancer immunotherapies

免疫疗法 计算生物学 癌症免疫疗法 医学 基因组学 癌症 免疫检查点 间质细胞 精密医学 免疫系统 生物信息学 转录组 免疫学 生物 癌症研究 基因组 内科学 病理 基因 遗传学 基因表达
作者
Venkateswar Addala,Felicity Newell,John V. Pearson,Alec Redwood,B. W. Robinson,Jenette Creaney,Nicola Waddell
出处
期刊:Nature Reviews Clinical Oncology [Nature Portfolio]
卷期号:21 (1): 28-46 被引量:36
标识
DOI:10.1038/s41571-023-00830-6
摘要

Cancer immunogenomics is an emerging field that bridges genomics and immunology. The establishment of large-scale genomic collaborative efforts along with the development of new single-cell transcriptomic techniques and multi-omics approaches have enabled characterization of the mutational and transcriptional profiles of many cancer types and helped to identify clinically actionable alterations as well as predictive and prognostic biomarkers. Researchers have developed computational approaches and machine learning algorithms to accurately obtain clinically useful information from genomic and transcriptomic sequencing data from bulk tissue or single cells and explore tumours and their microenvironment. The rapid growth in sequencing and computational approaches has resulted in the unmet need to understand their true potential and limitations in enabling improvements in the management of patients with cancer who are receiving immunotherapies. In this Review, we describe the computational approaches currently available to analyse bulk tissue and single-cell sequencing data from cancer, stromal and immune cells, as well as how best to select the most appropriate tool to address various clinical questions and, ultimately, improve patient outcomes. Identifying patients who are likely to benefit from immune-checkpoint inhibitors remains one of the major challenges in immunotherapy. Cancer immunogenomics is an emerging field that bridges genomics and immunology. The authors of this Review provide an overview of the computational approaches currently available to analyse bulk tissue and single-cell sequencing data from cancer, stromal and immune cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曹二关注了科研通微信公众号
刚刚
初之发布了新的文献求助10
1秒前
2秒前
4秒前
忐忑的雪糕完成签到 ,获得积分10
4秒前
FashionBoy应助开朗的早晨采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
搞怪大树完成签到,获得积分10
6秒前
7秒前
hamster发布了新的文献求助10
7秒前
10秒前
科研废物发布了新的文献求助10
10秒前
北鱼完成签到,获得积分20
10秒前
11秒前
ED应助AnJaShua采纳,获得20
11秒前
源主儿发布了新的文献求助30
12秒前
Zyhaou完成签到,获得积分10
13秒前
13秒前
14秒前
hamster完成签到,获得积分10
15秒前
qu发布了新的文献求助10
15秒前
可爱的函函应助sxp1031采纳,获得10
15秒前
李健应助荒岛上的木兰采纳,获得10
16秒前
培培完成签到 ,获得积分10
17秒前
17秒前
Hello应助欣慰妙海采纳,获得10
17秒前
17秒前
思源应助搞怪大树采纳,获得10
18秒前
核小蟀完成签到,获得积分10
18秒前
19秒前
19秒前
科研通AI2S应助lemon采纳,获得10
20秒前
21秒前
小二郎应助邪恶产品采纳,获得10
22秒前
优秀鸿涛发布了新的文献求助10
22秒前
源主儿完成签到,获得积分20
22秒前
22秒前
地SDF完成签到,获得积分10
23秒前
23秒前
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3955943
求助须知:如何正确求助?哪些是违规求助? 3502134
关于积分的说明 11106024
捐赠科研通 3232512
什么是DOI,文献DOI怎么找? 1786999
邀请新用户注册赠送积分活动 870307
科研通“疑难数据库(出版商)”最低求助积分说明 801960