FSE-Net: feature selection and enhancement network for mammogram classification

计算机科学 人工智能 模式识别(心理学) 特征选择 特征(语言学) 最小边界框 卷积神经网络 特征提取 乳腺摄影术 乳腺癌 图像(数学) 癌症 医学 哲学 语言学 内科学
作者
Caiqing Liao,Xin Wen,Shuman Qi,Yanan Liu,Rui Cao
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (19): 195001-195001 被引量:2
标识
DOI:10.1088/1361-6560/acf559
摘要

Abstract Objective . Early detection and diagnosis allow for intervention and treatment at an early stage of breast cancer. Despite recent advances in computer aided diagnosis systems based on convolutional neural networks for breast cancer diagnosis, improving the classification performance of mammograms remains a challenge due to the various sizes of breast lesions and difficult extraction of small lesion features. To obtain more accurate classification results, many studies choose to directly classify region of interest (ROI) annotations, but labeling ROIs is labor intensive. The purpose of this research is to design a novel network to automatically classify mammogram image as cancer and no cancer, aiming to mitigate or address the above challenges and help radiologists perform mammogram diagnosis more accurately. Approach . We propose a novel feature selection and enhancement network (FSE-Net) to fully exploit the features of mammogram images, which requires only mammogram images and image-level labels without any bounding boxes or masks. Specifically, to obtain more contextual information, an effective feature selection module is proposed to adaptively select the receptive fields and fuse features from receptive fields of different scales. Moreover, a feature enhancement module is designed to explore the correlation between feature maps of different resolutions and to enhance the representation capacity of low-resolution feature maps with high-resolution feature maps. Main results . The performance of the proposed network has been evaluated on the CBIS-DDSM dataset and INbreast dataset. It achieves an accuracy of 0.806 with an AUC of 0.866 on the CBIS-DDSM dataset and an accuracy of 0.956 with an AUC of 0.974 on the INbreast dataset. Significance . Through extensive experiments and saliency map visualization analysis, the proposed network achieves the satisfactory performance in the mammogram classification task, and can roughly locate suspicious regions to assist in the final prediction of the entire images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qiancheni发布了新的文献求助10
刚刚
lmq发布了新的文献求助10
1秒前
嗷嗷嗷啊完成签到,获得积分10
1秒前
亦景零枫完成签到,获得积分10
2秒前
jiying完成签到,获得积分20
2秒前
Xinxxx完成签到,获得积分10
3秒前
3秒前
Li完成签到,获得积分10
3秒前
3秒前
111完成签到,获得积分10
5秒前
5秒前
缓慢的煎蛋完成签到,获得积分10
6秒前
小鱼儿完成签到,获得积分10
6秒前
花生仔发布了新的文献求助10
6秒前
落竹发布了新的文献求助10
7秒前
zsy完成签到,获得积分10
7秒前
小休完成签到 ,获得积分10
7秒前
8秒前
堀江真夏完成签到 ,获得积分10
8秒前
9秒前
Monty完成签到,获得积分10
11秒前
CC完成签到,获得积分10
12秒前
安静问梅完成签到,获得积分10
12秒前
酷酷的思萱完成签到,获得积分10
12秒前
12秒前
夏夏霞完成签到,获得积分10
12秒前
FLZLC发布了新的文献求助10
13秒前
勤恳安彤发布了新的文献求助10
13秒前
发的风格完成签到,获得积分10
13秒前
Qiancheni完成签到,获得积分10
13秒前
CodeCraft应助落竹采纳,获得10
14秒前
轩辕沛柔完成签到,获得积分10
14秒前
现代小丸子完成签到 ,获得积分10
14秒前
sleepingfish完成签到,获得积分10
14秒前
俭朴新之完成签到 ,获得积分10
15秒前
CDY完成签到,获得积分10
15秒前
xiaojiu完成签到,获得积分10
15秒前
小科完成签到,获得积分10
16秒前
lxlx完成签到,获得积分10
16秒前
卡乐瑞咩吹可完成签到,获得积分10
17秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
Logical form: From GB to Minimalism 500
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4185217
求助须知:如何正确求助?哪些是违规求助? 3720948
关于积分的说明 11724691
捐赠科研通 3399264
什么是DOI,文献DOI怎么找? 1865144
邀请新用户注册赠送积分活动 922556
科研通“疑难数据库(出版商)”最低求助积分说明 834077