概化理论
瞬态(计算机编程)
电力系统
理论(学习稳定性)
控制(管理)
动作(物理)
计算机科学
学习网络
电力网络
控制系统
功率(物理)
控制工程
工程类
人工智能
控制理论(社会学)
机器学习
数学
电气工程
物理
统计
量子力学
操作系统
作者
Youbo Liu,Shuyu Gao,Gao Qiu,Tingjian Liu,Lijie Ding,Junyong Liu
标识
DOI:10.1109/tpwrs.2022.3233763
摘要
This letter proposes a physics-informed action network (PIAN) for power system transient stability preventive control (TSPC). The network firstly renders deep learning to reduce the TSPC complexity. Unlike common data-driven methods that superficially imitate control experience, TSPC is then analytically embedded into the proposed PIAN network, so that to enforce the network to learn in-depth physical patterns. The well-learned PIAN enables highly generalized real-time decisions. Comparisons with one model-based and two data-driven baselines on the IEEE 39-bus system and the IEEE 145-bus system highlight that, the proposed method enables highly reliable control decisions, and beats the others in terms of decision efficiency and generalizability.
科研通智能强力驱动
Strongly Powered by AbleSci AI