Volume under the surface

离群值 计算机科学 异常检测 航程(航空) 稳健性(进化) 阈值 数据挖掘 异常(物理) 系列(地层学) 人工智能 统计 数学 生物 基因 图像(数学) 物理 生物化学 古生物学 复合材料 化学 材料科学 凝聚态物理
作者
John Paparrizos,Paul Boniol,Themis Palpanas,Ruey S. Tsay,Aaron J. Elmore,Michael J. Franklin
出处
期刊:Proceedings of the VLDB Endowment [Association for Computing Machinery]
卷期号:15 (11): 2774-2787 被引量:40
标识
DOI:10.14778/3551793.3551830
摘要

Anomaly detection (AD) is a fundamental task for time-series analytics with important implications for the downstream performance of many applications. In contrast to other domains where AD mainly focuses on point-based anomalies (i.e., outliers in standalone observations), AD for time series is also concerned with range-based anomalies (i.e., outliers spanning multiple observations). Nevertheless, it is common to use traditional point-based information retrieval measures, such as Precision, Recall, and F-score, to assess the quality of methods by thresholding the anomaly score to mark each point as an anomaly or not. However, mapping discrete labels into continuous data introduces unavoidable shortcomings, complicating the evaluation of range-based anomalies. Notably, the choice of evaluation measure may significantly bias the experimental outcome. Despite over six decades of attention, there has never been a large-scale systematic quantitative and qualitative analysis of time-series AD evaluation measures. This paper extensively evaluates quality measures for time-series AD to assess their robustness under noise, misalignments, and different anomaly cardinality ratios. Our results indicate that measures producing quality values independently of a threshold (i.e., AUC-ROC and AUC-PR) are more suitable for time-series AD. Motivated by this observation, we first extend the AUC-based measures to account for range-based anomalies. Then, we introduce a new family of parameter-free and threshold-independent measures, VUS (Volume Under the Surface), to evaluate methods while varying parameters. Our findings demonstrate that our four measures are significantly more robust in assessing the quality of time-series AD methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
chen发布了新的文献求助10
2秒前
Zeng发布了新的文献求助10
3秒前
iuhgnor发布了新的文献求助10
3秒前
hh发布了新的文献求助10
4秒前
carrotleah发布了新的文献求助20
6秒前
6秒前
zloong发布了新的文献求助20
7秒前
好名字完成签到 ,获得积分10
9秒前
10秒前
10秒前
11秒前
科研通AI5应助MAIDANG采纳,获得10
11秒前
12秒前
北港十里巷完成签到,获得积分10
12秒前
dd发布了新的文献求助10
13秒前
john_joestar完成签到,获得积分10
14秒前
changnan发布了新的文献求助10
15秒前
机灵安白发布了新的文献求助10
16秒前
岛语安完成签到,获得积分20
17秒前
17秒前
YingyingFan发布了新的文献求助10
17秒前
zloong完成签到,获得积分10
19秒前
20秒前
21秒前
21秒前
语不惊人死不休完成签到,获得积分10
22秒前
24秒前
以行践言发布了新的文献求助10
25秒前
26秒前
Linco完成签到 ,获得积分10
27秒前
28秒前
29秒前
倦鸟归林发布了新的文献求助10
30秒前
31秒前
hh完成签到 ,获得积分20
31秒前
Junsir发布了新的文献求助10
32秒前
Owen应助huabanzhu1319采纳,获得10
34秒前
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785875
求助须知:如何正确求助?哪些是违规求助? 3331226
关于积分的说明 10250759
捐赠科研通 3046728
什么是DOI,文献DOI怎么找? 1672190
邀请新用户注册赠送积分活动 801071
科研通“疑难数据库(出版商)”最低求助积分说明 759979