Multi-view based computer-aided model with anatomical position prior for architectural distortion detection in digital breast tomosynthesis

技术 计算机科学 层析合成 人工智能 失真(音乐) 分类器(UML) 计算机视觉 模式识别(心理学) 乳房成像 乳腺摄影术 医学 乳腺癌 带宽(计算) 放大器 计算机网络 癌症 内科学
作者
Xiangyuan Ma,Zilong He,Yue Li,Weixiong Zeng,Jiawei Pan,Jialing Liu,Weimin Xu,Zeyuan Xu,Sina Wang,Chanjuan Wen,Hui Zeng,Jiefeng Wu,Zhaodong Zeng,Weiguo Chen,Yao Lu
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 卷期号:: 104-104 被引量:1
标识
DOI:10.1117/12.2654418
摘要

Architectural distortion (AD) is one of the important breast abnormal signs in digital breast tomosynthesis (DBT). It is hard to be detected due to its subtle appearance and similar intensity with surrounding tissue. To assist radiologists to detect ADs, a single-view based computer-aided detection model in DBT was developed by us previously. In this study, considering the fact that radiologists always use information from craniocaudal (CC) and mediolateral oblique (MLO) views of DBT simultaneously for better diagnosis of each breast in clinic, we further develop a multi-view based AD detection model in DBT that combines the information from the two views. In this model, AD candidates in each view are detected by our previous AD detection model. Anatomical position priors of AD candidates in the two views are considered through establishing a 3D anatomical coordinate system. A multi-view based classifier is trained to fuse information from the two views and distinguish the true AD candidates. A dataset of 196 CC-MLO DBT pairs were collected with IRB approval, 101 of them contained ADs and the remaining were negative pairs. Ten-fold cross-validation showed that after involving our proposed multi-view method, the sensitivities of AD detection at 1, 2, 3 and 4 false positive predictions per DBT pairs improved from 0.66, 0.73, 0.77 and 0.79 to 0.69, 0.77, 0.78, and 0.83, respectively. The results showed that the multi-view based model achieved better detection performance than single-view based model. This model has potential to assist radiologists in detection of ADs in DBT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙非完成签到,获得积分10
1秒前
伯爵完成签到 ,获得积分10
2秒前
旅游家完成签到 ,获得积分10
4秒前
薛wen晶完成签到 ,获得积分10
5秒前
可爱紫文完成签到 ,获得积分10
5秒前
快乐小菜瓜完成签到 ,获得积分10
6秒前
yiluyouni完成签到,获得积分0
7秒前
科研通AI5应助白菜采纳,获得10
8秒前
9秒前
jiayouYi完成签到,获得积分10
9秒前
10秒前
李健应助爱听歌的青筠采纳,获得10
10秒前
Nicole完成签到 ,获得积分10
11秒前
褚洙完成签到,获得积分10
12秒前
WTaMi完成签到 ,获得积分10
12秒前
future完成签到 ,获得积分10
14秒前
Wangyingjie5发布了新的文献求助10
14秒前
叶雨思空完成签到 ,获得积分10
15秒前
17秒前
霍凡白完成签到,获得积分10
20秒前
俎树同完成签到 ,获得积分10
21秒前
大胆的忆安完成签到 ,获得积分10
21秒前
22秒前
领导范儿应助白菜采纳,获得10
23秒前
jfw完成签到 ,获得积分10
26秒前
long0809完成签到,获得积分10
27秒前
着急的千山完成签到 ,获得积分10
27秒前
爱听歌的青筠完成签到,获得积分10
29秒前
圆规完成签到 ,获得积分10
30秒前
33秒前
匆匆完成签到 ,获得积分10
34秒前
NBS完成签到 ,获得积分10
35秒前
Kunning完成签到 ,获得积分10
36秒前
araul完成签到,获得积分10
39秒前
达斯维完成签到,获得积分10
40秒前
木木完成签到 ,获得积分10
42秒前
Fanfan完成签到 ,获得积分10
42秒前
聪明的泡面完成签到 ,获得积分10
44秒前
激昂的秀发完成签到,获得积分10
46秒前
小新小新完成签到 ,获得积分10
46秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340681
关于积分的说明 10301038
捐赠科研通 3057231
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626