Multi-Objective Unsupervised Band Selection Method for Hyperspectral Images Classification

高光谱成像 人工智能 模式识别(心理学) 计算机科学 渡线 布谷鸟搜索 选择(遗传算法) 人口 机器学习 人口学 粒子群优化 社会学
作者
Xianfeng Ou,Meng Wu,Bing Tu,Guoyun Zhang,Wujing Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 1952-1965 被引量:30
标识
DOI:10.1109/tip.2023.3258739
摘要

With the increasing spectral dimension of hyperspectral images (HSI), how correctly choose bands based on band correlation and information has become more significant, but also complicated. Band selection is a combinatorial optimization problem, and intelligent optimization algorithms have been shown to be crucial in solving combinatorial optimization problems. However, major of them only use a single objective as the selection index, while neglecting the overall features of hyperspectral images, which may lead to inaccuracy in object detection. To tackle this, we propose a band selection method based on a multi-objective cuckoo search algorithm (MOCS) when constructing a multi-objective unsupervised band selection model based on the amount of information and correlation of the bands (MOCS-BS). Specifically, an adaptive strategy based on population crowding degree is first proposed to assist Lévy flight in overcoming the influence of the parameter constancy. Then, an information-sharing strategy based on grouping and crossover is designed to balance the search ability between global exploration and local exploitation, which can overcome the shortcomings caused by the lack of information interaction between individuals. Finally, the HSI classification experiments are performed by Random Forest and KNN classifiers based on the subset of bands selected by the proposed MOCS-BS method. The proposed method is compared with state-of-the-art algorithms including neighborhood grouping normalized matched filter (NGNMF) and multi-objective artificial bee colony with band selection (MABC-BS) on four HSI datasets. The experimental results demonstrate that MOCS-BS is more effective and robust than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻完成签到 ,获得积分10
1秒前
LZK发布了新的文献求助10
1秒前
1秒前
害羞的败发布了新的文献求助10
2秒前
2秒前
dxddd发布了新的文献求助10
2秒前
科研通AI5应助能干的人采纳,获得10
3秒前
浮游应助劳永杰采纳,获得10
4秒前
咕噜发布了新的文献求助10
4秒前
meinv发布了新的文献求助10
5秒前
happy8le发布了新的文献求助10
6秒前
7秒前
小陈发布了新的文献求助10
7秒前
CodeCraft应助风辞采纳,获得10
7秒前
7秒前
9秒前
9秒前
李爱国应助小不采纳,获得10
11秒前
852应助小松奈奈采纳,获得10
12秒前
12秒前
Zzz应助FFFFFFG采纳,获得10
12秒前
liulu发布了新的文献求助10
13秒前
15秒前
Danielle完成签到,获得积分10
15秒前
quaso驳回了浮游应助
16秒前
littlepuppy完成签到,获得积分10
17秒前
18秒前
上善若水完成签到 ,获得积分10
18秒前
FashionBoy应助小陈采纳,获得10
18秒前
19秒前
19秒前
wudizhuzhu233完成签到,获得积分10
19秒前
北有云烟完成签到 ,获得积分10
20秒前
21秒前
lxgz完成签到 ,获得积分10
22秒前
小蘑菇应助迅速的曼卉采纳,获得10
22秒前
23秒前
lyherok关注了科研通微信公众号
23秒前
zxd完成签到,获得积分10
24秒前
翠花发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
Vertebrate Palaeontology, 5th Edition 210
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4819070
求助须知:如何正确求助?哪些是违规求助? 4128189
关于积分的说明 12775812
捐赠科研通 3867691
什么是DOI,文献DOI怎么找? 2128304
邀请新用户注册赠送积分活动 1149107
关于科研通互助平台的介绍 1044750