清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Boosting particle swarm optimization by backtracking search algorithm for optimization problems

计算机科学 回溯 粒子群优化 数学优化 局部搜索(优化) 测试套件 元启发式 趋同(经济学) 多群优化 算法 群体行为 Boosting(机器学习) 测试用例 人工智能 机器学习 数学 回归分析 经济 经济增长
作者
Sukanta Nama,Apu Kumar Saha,Sanjoy Chakraborty,Amir H. Gandomi,Laith Abualigah
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:79: 101304-101304 被引量:55
标识
DOI:10.1016/j.swevo.2023.101304
摘要

Adjusting the search behaviors of swarm-based algorithms during their execution is a fundamental errand for addressing real-world global optimizing challenges. Along this line, scholars are actively investigating the unvisited areas of a problem domain rationally. Particle Swarm Optimization (PSO), a popular swarm-based optimization algorithm, is broadly applied to resolve different real-world problems because of its more robust searching capacity. However, in some situations, due to an unbalanced trade-off between exploitation and exploration, PSO gets stuck in a suboptimal solution. To overcome this problem, this study proposes a new ensemble algorithm called e-mPSOBSA with the aid of the reformed Backtracking Search Algorithm (BSA) and PSO. The proposed technique first integrates PSO's operational potential and then introduces BSA's exploration capability to help boost global exploration, local exploitation, and an acceptable balance during the quest process. The IEEE CEC 2014 and CEC 2017 test function suite was considered for evaluation. The outcomes were contrasted with 26 state-of-the-art algorithms, including popular PSO and BSA variants. The convergence analysis, diversity analysis, and statistical test were also executed. In addition, the projected e-mPSOBSA was employed to evaluate four unconstrained and seven constrained engineering design problems, and performances were equated with various algorithms. All these analyses endorse the better performance of the suggested e-mPSOBSA for global optimization tasks, search performance, solution accuracy, and convergence rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
lily完成签到 ,获得积分10
19秒前
back you up完成签到,获得积分0
26秒前
WSZXQ完成签到,获得积分10
41秒前
娟娟加油完成签到 ,获得积分10
52秒前
57秒前
陈_Ccc完成签到 ,获得积分10
59秒前
1分钟前
范振杰发布了新的文献求助10
1分钟前
马婷婷发布了新的文献求助10
1分钟前
Rita应助范振杰采纳,获得10
1分钟前
Owen应助Bryan采纳,获得10
1分钟前
Tina完成签到 ,获得积分10
1分钟前
雪花完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
清秀的怀蕊完成签到 ,获得积分10
1分钟前
203040发布了新的文献求助10
1分钟前
迷路向松完成签到,获得积分10
1分钟前
huhu发布了新的文献求助10
1分钟前
Akim应助xun采纳,获得10
1分钟前
1分钟前
北斗HH完成签到,获得积分10
2分钟前
鸠摩智完成签到,获得积分10
2分钟前
范振杰完成签到,获得积分20
2分钟前
2分钟前
xun发布了新的文献求助10
2分钟前
缥缈火车完成签到,获得积分10
2分钟前
闪闪的谷梦完成签到 ,获得积分10
2分钟前
wanci应助xun采纳,获得10
2分钟前
ys1008完成签到,获得积分10
2分钟前
真的OK完成签到,获得积分10
2分钟前
Drizzle完成签到,获得积分10
2分钟前
文献蚂蚁完成签到,获得积分10
2分钟前
洋芋饭饭完成签到,获得积分10
2分钟前
2分钟前
haralee完成签到 ,获得积分10
3分钟前
微卫星不稳定完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340665
关于积分的说明 10300948
捐赠科研通 3057168
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626