Machine learning-enabled optimization of extrusion-based 3D printing

3D打印 计算机科学 计算机辅助设计 工程制图 挤压 熔融沉积模型 人工智能 机器学习 机械工程 工程类 材料科学 冶金
作者
Sajjad Rahmani Dabbagh,Oğuzhan Özcan,Savaş Taşoğlu
出处
期刊:Methods [Elsevier]
卷期号:206: 27-40 被引量:71
标识
DOI:10.1016/j.ymeth.2022.08.002
摘要

Machine learning (ML) and three-dimensional (3D) printing are among the fastest-growing branches of science. While ML can enable computers to independently learn from available data to make decisions with minimal human intervention, 3D printing has opened up an avenue for modern, multi-material, manufacture of complex 3D structures with a rapid turn-around ability for users with limited manufacturing experience. However, the determination of optimum printing parameters is still a challenge, increasing pre-printing process time and material wastage. Here, we present the first integration of ML and 3D printing through an easy-to-use graphical user interface (GUI) for printing parameter optimization. Unlike the widely held orthogonal design used in most of the 3D printing research, we, for the first time, used nine different computer-aided design (CAD) images and in order to enable ML algorithms to distinguish the difference between designs, we devised a self-designed method to calculate the “complexity index” of CAD designs. In addition, for the first time, the similarity of the print outcomes and CAD images are measured using four different self-designed labeling methods (both manually and automatically) to figure out the best labeling method for ML purposes. Subsequently, we trained eight ML algorithms on 224 datapoints to identify the best ML model for 3D printing applications. The “gradient boosting regression” model yields the best prediction performance with an R-2 score of 0.954. The ML-embedded GUI developed in this study enables users (either skilled or unskilled in 3D printing and/or ML) to simply upload a design (desired to print) to the GUI along with desired printing temperature and pressure to obtain the approximate similarity in the case of actual 3D printing of the uploaded design. This ultimately can prevent error-and-trial steps prior to printing which in return can speed up overall design-to-end-product time with less material waste and more cost-efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangxasq完成签到,获得积分10
刚刚
迷路赛君完成签到,获得积分10
1秒前
我不理解完成签到,获得积分10
2秒前
脑洞疼应助tttt采纳,获得10
2秒前
3秒前
贪玩心情完成签到,获得积分20
3秒前
科研通AI6应助云上京采纳,获得10
3秒前
4秒前
4秒前
周周完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
好运关注了科研通微信公众号
6秒前
乐乐应助Suysheng采纳,获得10
6秒前
隐形曼青应助Sharon采纳,获得10
6秒前
酷波er应助Navial30采纳,获得30
7秒前
清欢渡Hertz完成签到,获得积分10
8秒前
完美世界应助11采纳,获得10
8秒前
CHEN发布了新的文献求助10
9秒前
9秒前
周周发布了新的文献求助10
9秒前
tianshanfeihe完成签到 ,获得积分10
9秒前
刘亦菲完成签到,获得积分20
10秒前
JIANG完成签到,获得积分10
10秒前
高兴的店员完成签到,获得积分10
11秒前
撒西不理发布了新的文献求助10
12秒前
王平宇发布了新的文献求助10
12秒前
12秒前
x10056完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
英姑应助sss采纳,获得10
13秒前
14秒前
15秒前
orixero应助个性德天采纳,获得10
15秒前
15秒前
summer夏完成签到,获得积分10
17秒前
17秒前
一一完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478725
求助须知:如何正确求助?哪些是违规求助? 4580466
关于积分的说明 14374363
捐赠科研通 4508837
什么是DOI,文献DOI怎么找? 2470966
邀请新用户注册赠送积分活动 1457588
关于科研通互助平台的介绍 1431486