免疫系统
生物
免疫疗法
胰腺癌
免疫学
转移
癌症研究
抗原
原发性肿瘤
BTLA公司
CD44细胞
癌症
T细胞
细胞
遗传学
作者
Brian Diskin,Salma Adam,Gustavo Sanchez Soto,Miguel Liria,Berk Aykut,Belen Sundberg,Eric Li,Joshua Leinwand,Ruonan Chen,Mirhee Kim,Ruben D. Salas,Marcelo Ferreira Cassini,Chandan Buttar,Wei Wang,Mohammad Saad Farooq,Sorin A. A. Shadaloey,Gregor Werba,Fnu Amreek,Fan Yang,Carolina Hirsch
出处
期刊:Oncogene
[Springer Nature]
日期:2022-08-10
卷期号:41 (38): 4349-4360
被引量:10
标识
DOI:10.1038/s41388-022-02425-4
摘要
Response to cancer immunotherapy in primary versus metastatic disease has not been well-studied. We found primary pancreatic ductal adenocarcinoma (PDA) is responsive to diverse immunotherapies whereas liver metastases are resistant. We discovered divergent immune landscapes in each compartment. Compared to primary tumor, liver metastases in both mice and humans are infiltrated by highly anergic T cells and MHCIIloIL10+ macrophages that are unable to present tumor-antigen. Moreover, a distinctive population of CD24+CD44-CD40- B cells dominate liver metastases. These B cells are recruited to the metastatic milieu by Muc1hiIL18hi tumor cells, which are enriched >10-fold in liver metastases. Recruited B cells drive macrophage-mediated adaptive immune-tolerance via CD200 and BTLA. Depleting B cells or targeting CD200/BTLA enhanced macrophage and T-cell immunogenicity and enabled immunotherapeutic efficacy of liver metastases. Our data detail the mechanistic underpinnings for compartment-specific immunotherapy-responsiveness and suggest that primary PDA models are poor surrogates for evaluating immunity in advanced disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI