Deep learning-based pore network generation: Numerical insights into pore geometry effects on microstructural fluid flow behaviors of unconventional resources

流量(数学) 地质学 流体力学 机械 多孔性 几何学 材料科学 石油工程 岩土工程 物理 数学
作者
Bei-Er Guo,Nan Xiao,Dmitriy A. Martyushev,Zhi Zhao
出处
期刊:Energy [Elsevier BV]
卷期号:294: 130990-130990 被引量:6
标识
DOI:10.1016/j.energy.2024.130990
摘要

Pore-scale transport behaviors and mechanisms of rock reservoirs are still not well understood to increase unconventional resource production. This work mainly focuses on proposing a deep learning-based method to rapidly construct optimal pore network with different pore types, and deeply analyze its effects on pore-scale transport behaviors and mechanisms. The pore-scale variables reservoir evaluation indexes are defined to quantitatively evaluate pore geometry effects on the properties and production of rock reservoirs. The two-phase displacement simulations in pore network are conducted to study microstructural flow behaviors and transport mechanisms. Results suggest that the deep learning-based digital labeling algorithm (DL-DLA) has excellent abilities to rapidly construct pore network with errors less than 5%, compared with the classical algorithms. Square pores and circle throats are suggested as the optimal pore network assembly, considering the fluid phase drainage efficiency and production rate. The microstructural transport mechanisms are concluded as the pore-throat drainage, pore-filling, fluid phase mixing and fluid phase equilibrium processes. The novel theoretical relation between fluid phase drainage and microscopic production indexes provides effective tools to estimate rock reservoir production with errors all less than 10%, which are helpful for the technique developments to increase the production of unconventional resources in rock reservoirs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助毛淑飞采纳,获得10
刚刚
maozl完成签到 ,获得积分10
1秒前
1325850238完成签到,获得积分10
1秒前
1秒前
wanci应助Zll采纳,获得10
8秒前
关复观完成签到,获得积分10
9秒前
9秒前
一别如斯完成签到,获得积分10
10秒前
zzz发布了新的文献求助10
12秒前
科研通AI5应助剧院的饭桶采纳,获得10
13秒前
何罐吾言完成签到,获得积分10
14秒前
14秒前
Eason小川发布了新的文献求助10
15秒前
呵呵完成签到,获得积分10
15秒前
jj完成签到,获得积分10
16秒前
111完成签到,获得积分10
16秒前
17秒前
科研通AI5应助星之芋采纳,获得10
18秒前
18秒前
lafe123456发布了新的文献求助10
19秒前
Zll发布了新的文献求助10
21秒前
22秒前
22秒前
万能图书馆应助ll采纳,获得10
24秒前
陈思妤发布了新的文献求助10
25秒前
lafe123456完成签到,获得积分10
26秒前
LW完成签到,获得积分20
27秒前
Zll完成签到,获得积分10
27秒前
28秒前
博修发布了新的文献求助10
28秒前
11完成签到,获得积分10
31秒前
小蘑菇应助zzz采纳,获得10
32秒前
英姑应助hh采纳,获得10
32秒前
33秒前
开朗的鞋子完成签到,获得积分10
34秒前
37秒前
37秒前
内向代珊发布了新的文献求助10
38秒前
金水完成签到,获得积分10
39秒前
39秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Lab Dog: What Global Science Owes American Beagles 200
Governing Marine Living Resources in the Polar Regions 200
Bazaar to piazza. Islamic trade and Italian art, 1300–1600 200
Encyclopaedia Britannica 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824449
求助须知:如何正确求助?哪些是违规求助? 3366734
关于积分的说明 10442486
捐赠科研通 3086093
什么是DOI,文献DOI怎么找? 1697679
邀请新用户注册赠送积分活动 816458
科研通“疑难数据库(出版商)”最低求助积分说明 769676