亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Task-based transferable deep-learning scatter correction in cone beam computed tomography: a simulation study

卷积神经网络 人工智能 成像体模 锥束ct 投影(关系代数) 图像质量 计算机科学 概化理论 过程(计算) 深度学习 任务(项目管理) 计算机视觉 影像引导放射治疗 模式识别(心理学) 医学影像学 图像(数学) 核医学 计算机断层摄影术 医学 算法 数学 统计 操作系统 放射科 经济 管理
作者
Juan P. Cruz‐Bastida,Fernando Moncada,A. Martı́nez-Dávalos,Mercedes Rodríguez‐Villafuerte
出处
期刊:Journal of medical imaging [SPIE]
卷期号:11 (02) 被引量:1
标识
DOI:10.1117/1.jmi.11.2.024006
摘要

PurposeX-ray scatter significantly affects the image quality of cone beam computed tomography (CBCT). Although convolutional neural networks (CNNs) have shown promise in correcting x-ray scatter, their effectiveness is hindered by two main challenges: the necessity for extensive datasets and the uncertainty regarding model generalizability. This study introduces a task-based paradigm to overcome these obstacles, enhancing the application of CNNs in scatter correction.ApproachUsing a CNN with U-net architecture, the proposed methodology employs a two-stage training process for scatter correction in CBCT scans. Initially, the CNN is pre-trained on approximately 4000 image pairs from geometric phantom projections, then fine-tuned using transfer learning (TL) on 250 image pairs of anthropomorphic projections, enabling task-specific adaptations with minimal data. 2D scatter ratio (SR) maps from projection data were considered as CNN targets, and such maps were used to perform the scatter prediction. The fine-tuning process for specific imaging tasks, like head and neck imaging, involved simulating scans of an anthropomorphic phantom and pre-processing the data for CNN retraining.ResultsFor the pre-training stage, it was observed that SR predictions were quite accurate (SSIM≥0.9). The accuracy of SR predictions was further improved after TL, with a relatively short retraining time (≈70 times faster than pre-training) and using considerably fewer samples compared to the pre-training dataset (≈12 times smaller).ConclusionsA fast and low-cost methodology to generate task-specific CNN for scatter correction in CBCT was developed. CNN models trained with the proposed methodology were successful to correct x-ray scatter in anthropomorphic structures, unknown to the network, for simulated data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏夏完成签到 ,获得积分10
2秒前
烟花应助生动的小虾米采纳,获得10
8秒前
8秒前
10秒前
啊啊啊啊发布了新的文献求助10
13秒前
13秒前
present完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
19秒前
昌弘文发布了新的文献求助10
19秒前
ppp发布了新的文献求助10
19秒前
luohao完成签到,获得积分10
28秒前
昌弘文完成签到,获得积分10
41秒前
blenx完成签到,获得积分10
43秒前
51秒前
娃哈哈发布了新的文献求助10
55秒前
1分钟前
1分钟前
搜集达人应助ring采纳,获得10
1分钟前
子阅发布了新的文献求助10
1分钟前
1分钟前
丘比特应助qiqi采纳,获得10
2分钟前
2分钟前
2分钟前
九月发布了新的文献求助10
2分钟前
2分钟前
3分钟前
核桃应助科研通管家采纳,获得50
3分钟前
3分钟前
Hiraeth完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
学术之神庇佑的一完成签到,获得积分10
3分钟前
qiqi完成签到,获得积分10
3分钟前
西西完成签到,获得积分20
3分钟前
3分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804115
求助须知:如何正确求助?哪些是违规求助? 3348989
关于积分的说明 10341016
捐赠科研通 3065137
什么是DOI,文献DOI怎么找? 1682911
邀请新用户注册赠送积分活动 808555
科研通“疑难数据库(出版商)”最低求助积分说明 764600