For a positive integer n ≥ 2n\ge 2 , we look at the number of solutions of the Diophantine equation n(x1+ ⋯ +xn)=x1 ⋯ xn.\begin{equation*} n(x_1+\cdots +x_n)=x_1\cdots x_n. \end{equation*} Denoting by f(n)f(n) this number we show that lim infn → ∞ log f(n)/log n=0\liminf _{n\to \infty } \log f(n)/\log n=0 .