期望最大化算法
混合模型
阅读理解
最大化
计算机科学
认知
认知模型
人口
理解力
机器学习
阅读(过程)
人工智能
统计
数学
最大似然
心理学
数学优化
神经科学
人口学
社会学
程序设计语言
法学
政治学
作者
Joemari Olea,Kevin Carl Santos
标识
DOI:10.3102/10769986231176012
摘要
Although the generalized deterministic inputs, noisy “and” gate model (G-DINA; de la Torre, 2011) is a general cognitive diagnosis model (CDM), it does not account for the heterogeneity that is rooted from the existing latent groups in the population of examinees. To address this, this study proposes the mixture G-DINA model, a CDM that incorporates the G-DINA model within the finite mixture modeling framework. An expectation–maximization algorithm is developed to estimate the mixture G-DINA model. To determine the viability of the proposed model, an extensive simulation study is conducted to examine the parameter recovery performance, model fit, and correct classification rates. Responses to a reading comprehension assessment were analyzed to further demonstrate the capability of the proposed model.
科研通智能强力驱动
Strongly Powered by AbleSci AI