Improving Photoelectrochemical Activity of a Silver Sulfide-Based Photoelectrode by Bismuth Doping for Hydrogen Evolution from Industrial Waste Water

硫化氢 硫化物 兴奋剂 分解水 材料科学 环境科学 无机化学 光催化 化学 冶金 硫黄 催化作用 光电子学 生物化学
作者
Ying‐Chu Chen,Hsuan-Ting Kuo,Yun-Hsiang Lu,Yu‐Kuei Hsu
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:7 (11): 4761-4767 被引量:2
标识
DOI:10.1021/acsaem.4c00447
摘要

Trivalent bismuth (Bi3+) is put forward for the first time as a multifunctional dopant to tailor the optoelectronic property of silver sulfide (Ag2S), which is known as a promising photoelectrode candidate in view of its narrow band gap of ∼1.1 eV comparable to that of its toxic PbS counterpart. The introduction of Bi3+ into Ag2S gives rise to Bi:Ag2S to harvest light with a photon energy even lower than 1.1 eV via providing additional energy levels within its band gap. The electrical conductivity of Bi:Ag2S is also improved via offering extra free electrons to increase the carrier concentration to facilitate the transport of photoexcited electron–hole pairs. As an additional result of such increment in electron density is the Fermi level of Bi:Ag2S closer to its conduction band edge, leading to its potential difference with respect to that of the sulfide (S2–) and sulfite (SO32–) redox couples present in large quantity in industrial wastewater markedly amplified. More importantly, the degree of surface band bending is thereby well-strengthened to promote the separation of the photogenerated electron–hole pairs, which is further reinforced by depositing Bi:Ag2S on the zinc oxide nanorods (ZnO NRs) to form a Bi:Ag2S/ZnO NR heterojunction. The synergistic effect of the aforesaid enhancements renders the hydrogen evolution rate over Bi:Ag2S/ZnO NRs largely accelerated, as evidently manifested in its photocurrent density achieving 7 mA cm–2, far exceeding those reported for additional Ag2S-based photoelectrodes in the literature, of which the great promise is in view of such outperformance well-corroborated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李博士完成签到,获得积分10
1秒前
日川冈坂发布了新的文献求助10
1秒前
1秒前
思源应助小波采纳,获得10
6秒前
二尖瓣后叶应助归海子轩采纳,获得10
8秒前
8秒前
领导范儿应助宁灭龙采纳,获得20
8秒前
8秒前
淡然幻珊完成签到,获得积分20
10秒前
12秒前
小蘑菇应助1111chen采纳,获得10
12秒前
SiDi发布了新的文献求助10
13秒前
14秒前
机智冬瓜完成签到,获得积分10
15秒前
HR112应助SiDi采纳,获得10
16秒前
18秒前
18秒前
善学以致用应助佳佳佳采纳,获得10
18秒前
玉簟秋发布了新的文献求助10
19秒前
小于完成签到,获得积分10
21秒前
在水一方应助白金之星采纳,获得10
21秒前
22秒前
易永熙完成签到,获得积分10
23秒前
26秒前
ZW完成签到,获得积分10
26秒前
hjy完成签到,获得积分10
26秒前
独特雨兰发布了新的文献求助20
27秒前
27秒前
111发布了新的文献求助10
29秒前
wse完成签到,获得积分10
29秒前
29秒前
hw完成签到,获得积分10
30秒前
西陆完成签到,获得积分10
30秒前
孜然西瓜完成签到,获得积分10
30秒前
爆米花应助emotional_damage采纳,获得10
32秒前
谷粱诗云发布了新的文献求助10
32秒前
32秒前
沉默士萧发布了新的文献求助10
32秒前
34秒前
35秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Research on the impact of environmental decentralisation and environmental regulations on agricultural pollution 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3898615
求助须知:如何正确求助?哪些是违规求助? 3442920
关于积分的说明 10828734
捐赠科研通 3167623
什么是DOI,文献DOI怎么找? 1750269
邀请新用户注册赠送积分活动 845870
科研通“疑难数据库(出版商)”最低求助积分说明 788890