Unraveling the Heterogeneity of Multiple Myeloma Cells By Single-Cell RNA Sequencing Analysis

多发性骨髓瘤 生物 核糖核酸 单细胞分析 计算生物学 遗传学 细胞 基因 免疫学
作者
Takahiro Kamiya,Motohiko Oshima,Shuhei Koide,Yaeko Nakajima‐Takagi,Kazumasa Aoyama,Naoki Itokawa,Masayuki Yamashita,Noriko Doki,Keisuke Kataoka,Atsushi Iwama
出处
期刊:Blood [American Society of Hematology]
卷期号:140 (Supplement 1): 9939-9940
标识
DOI:10.1182/blood-2022-166085
摘要

Multiple myeloma (MM) is a malignancy of clonal plasma cells with identical variable-diversity-joining (VDJ) region recombination of immunoglobulin loci (called repertoire) and extensive genome or transcriptome heterogeneity. Even though many new treatment modalities have been developed and the prognosis of patients has improved significantly, most cases of MM remain incurable. Recent evidence suggests that non-genetic cell plasticity and changes in cell state underlie the therapy resistance and tumor relapse, but the mechanisms remain largely unknown. Here, we have attempted to understand comprehensive architecture of the entire tumor cell populations using repertoire clonality as fingerprint. First, we subdivided bone marrow samples of primary MM at different stages (n=8) into 11 fractions based on the known surface antigens of MM and performed bulk RNA sequencing (bulk RNA-seq). Analysis of the repertoire revealed that tumor cells were also present in some minor fractions other than the main fraction (Lin-/CD19-/CD38++/CD138+) as the stage progressed. Importantly, cells with clonal repertoire were detected in CD138 negative fraction (Lin-/CD19-/CD38++/CD138-) in most samples (Monoclonal gammopathy of undetermined significance (MGUS) / Smoldering multiple myeloma (SMM) = 4.15±2.28%, Primary MM = 6.78±3.59%, Relapse MM = 7.8±5.82% [mean±95%Cl], n=24). The CD138 positive and negative cells were also morphologically different, suggesting that they were composed by cells of distinct characteristics. Indeed, comparison of the transcriptome data revealed 296 differentially expressed genes (DEGs) between these fractions (250 up-regulated and 46 down-regulated in CD138 negative fractions). Of interest, several pathways related to H3K4 methylation were positively enriched in CD138 negative fraction (p <0.001), which included KMT2A, KMT2B, KMT2C, KMT2D, and ASH1L, suggesting that differential methylation of histone H4 accounts for the heterogeneity of MM. In order to achieve a high-resolution and comprehensive evaluation of the entire tumor cell populations, we performed single-cell RNA sequencing (scRNA-seq) and single-cell VDJ targeted sequencing (scVDJ-seq) concurrently on Lin-/CD38++ sorted cells of 8 bone marrow samples from 7 patients including pre- and post-treatment status samples. This method allowed us to define normal cells and MM cells at the single-cell level by clonal repertoire sequence independent of transcriptome characteristics. We divided 18,031 MM cells into 23 clusters after integration. We first defined CD138 positive and negative MM gene signature using bulk RNA-seq data and then evaluated the scRNA-seq data. Notably, the CD138 axis appeared to clearly subdivide main MM populations into those with CD138 positive and negative MM gene signature. We also found that a part of clusters, which showed CD138 negative MM gene signature, tended to remain at high proportions after treatment. These populations were characterized by low expression levels of MHC class-I components and TNFRSF17/BCMA as well as high expression of MCL1, MALAT1 and NEAT1, which have been previously implicated in treatment resistance, and were present in all samples. H3K4 methylation related genes were also up-regulated in these populations. Furthermore, we found several clusters with unique and interesting characteristics independent of the CD138 axis. Trajectory and velocity analysis suggested that all cell populations transit to each other. Taken together, our results establish the heterogeneity of MM cells by the CD138 axis, which may be characterized by epigenetic plasticity. They also highlight CD138 negative population as a potential cause of treatment resistance and relapse. By using information of repertoire, we have achieved a comprehensive and accurate single-cell analysis of MM cell diversity that was not limited by cell surface antigens or transcriptome characteristics. We are currently analyzing near minimal residual disease (MRD) level samples using the same scRNA-seq methods and the functional and epigenetic properties of CD138 positive and negative MM cells.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼白猫完成签到 ,获得积分10
2秒前
3秒前
sheila完成签到 ,获得积分10
3秒前
章访曼发布了新的文献求助10
3秒前
4秒前
lorentzh完成签到,获得积分20
5秒前
6秒前
陈cc完成签到,获得积分20
6秒前
grzzz发布了新的文献求助10
6秒前
师大刘亦菲完成签到 ,获得积分10
9秒前
10秒前
江南小水龟完成签到,获得积分10
10秒前
6一完成签到,获得积分10
10秒前
外向不愁发布了新的文献求助10
10秒前
Ailash发布了新的文献求助10
11秒前
11秒前
Rachel完成签到 ,获得积分10
11秒前
慕青应助江南小水龟采纳,获得10
12秒前
13秒前
grzzz完成签到,获得积分10
13秒前
陈cc发布了新的文献求助10
13秒前
wa发布了新的文献求助10
13秒前
纳兰若微发布了新的文献求助30
15秒前
无花果应助gj采纳,获得10
15秒前
16秒前
tcmlida完成签到,获得积分10
17秒前
tanbao完成签到,获得积分10
17秒前
DragonAca完成签到,获得积分0
19秒前
20秒前
平常朝雪发布了新的文献求助10
20秒前
20秒前
Axel驳回了田様应助
21秒前
脑洞疼应助橘子橘子采纳,获得10
22秒前
24秒前
24秒前
25秒前
25秒前
27秒前
lpj完成签到,获得积分10
27秒前
蜗牛的世界完成签到,获得积分10
27秒前
高分求助中
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 1000
Corrosion and Oxygen Control 600
Heterocyclic Stilbene and Bibenzyl Derivatives in Liverworts: Distribution, Structures, Total Synthesis and Biological Activity 500
重庆市新能源汽车产业大数据招商指南(两链两图两池两库两平台两清单两报告) 400
Division and square root. Digit-recurrence algorithms and implementations 400
行動データの計算論モデリング 強化学習モデルを例として 400
Coping Responses Inventory: A measure of approach and avoidance coping skills 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2546858
求助须知:如何正确求助?哪些是违规求助? 2175934
关于积分的说明 5601787
捐赠科研通 1896763
什么是DOI,文献DOI怎么找? 946398
版权声明 565379
科研通“疑难数据库(出版商)”最低求助积分说明 503588