蛋白质组学
多路复用
微流控
腺癌
免疫分析
癌症生物标志物
计算生物学
纳米技术
化学
生物信息学
生物
癌症
医学
材料科学
抗体
免疫学
内科学
生物化学
基因
作者
Dechun Zhang,Kaiming Peng,Hui Xu,Yanping Chen,Jing Wang
出处
期刊:Advanced Science
[Wiley]
日期:2025-05-03
卷期号:12 (25): e2501336-e2501336
被引量:3
标识
DOI:10.1002/advs.202501336
摘要
Abstract The presence of a micropapillary (MPP) component is a crucial determinant of surgical strategies for lung adenocarcinoma (LUAD), yet reliable blood biomarkers for predicting MPP⁺ LUAD remain elusive. Here, we integrate 4D label‐free quantitative proteomics, a nanomixing‐enhanced microfluidic surface‐enhanced Raman spectroscopy (SERS) platform, and machine learning to sensitively identify and validate blood protein biomarkers associated with MPP⁺ LUAD. Comparative proteomics reveal 44 differentially expressed proteins (DEPs) between MPP⁺ and MPP⁻ LUADs, with bioinformatics uncovering their roles in MPP⁺ LUAD formation. To enable sensitive, multiplex detection of 4 upregulated DEPs, the nanomixing effect is leveraged to enhance target protein‐SERS barcode interactions while minimizing nonspecific binding to antibody‐functionalized gold electrodes. The SERS barcode cocktail allows simultaneous detection of the 4 selected DEPs. Machine learning models based on SERS detection effectively distinguish MPP⁺ from MPP⁻ LUAD patients, as well as LUAD patients from healthy donors. This approach demonstrates strong diagnostic potential for early, non‐invasive MPP detection in LUAD, advancing nanotechnology‐driven disease diagnosis and monitoring.
科研通智能强力驱动
Strongly Powered by AbleSci AI