Abstract 2436: Prostate cancer risk stratification based on 3D histomorphometric features related to perineural invasion (PNI)

危险分层 旁侵犯 前列腺癌 医学 分层(种子) 癌症 前列腺 肿瘤科 内科学 生物 种子休眠 植物 发芽 休眠
作者
Sarah S. L. Chow,Rui Wang,Yujie Zhao,Robert Serafin,Elena Baraznenok,Lydia Lan,Xavier Farré,Kevin W. Bishop,Gan Gao,Lawrence D. True,Anant Madabhushi,Jonathan T. Liu
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:85 (8_Supplement_1): 2436-2436
标识
DOI:10.1158/1538-7445.am2025-2436
摘要

Prostate cancer (PCa) treatment decisions rely heavily on the examination of 2D histology sections (i.e. Gleason grading). However, the limited sampling of specimens afforded by 2D histopathology, and the ambiguities of viewing cross-sections of complex structures such as prostate glands, can cause high interpathologist variability and nonoptimal treatment decisions, especially for low- to intermediate-grade PCa. Our lab has previously shown that computational analysis of 3D histomorphometric features, such as those derived from gland and nuclear segmentation, can improve PCa risk assessment compared to analogous 2D features. Here, we expand on these findings by exploring the prognostic value of 3D features from nerves. These structures are critical as prostate cancer cells follow them to migrate and metastasize, i.e. perineural invasion (PNI), which is correlated with worse patient outcomes. We therefore aim to show the analysis of 3D features related to PNI can provide additional prognostic value. To analyze 3D nerve structures, we utilized a 3D deep learning-based segmentation model, nnU-Net, trained on 3D data from punch biopsies extracted from archived formalin-fixed paraffin-embedded (FFPE) prostatectomy specimens and imaged with a 4th-generation open-top light-sheet (OTLS) microscope. To train a segmentation model without requiring tedious manual annotations, prostate specimens were triple labeled with a fluorescent analog of H&E (nuclear and cytoplasmic stains) plus an antibody targeting PGP9.5, which labels nerves. The H&E-analog channels serve as inputs for the nnU-Net model. To train the model, ground-truth 3D segmentation masks were generated from the PGP9.5 immunofluorescence channel. The trained model allows us to generate 3D segmentation masks of nerves directly from specimens labeled with small-molecule (quickly diffusing) fluorescent analog of H&E, which is fast and inexpensive compared with thick-tissue immunolabeling. The trained 3D nerve segmentation model achieved an average Dice score of 0.86 on held-out validation datasets of tri-labeled specimens (n=10). The segmentation performance was also evaluated on 2D regions (n=53) extracted from 3D pathology datasets of 8 prostatectomy specimens, yielding an average Dice score of 0.64 compared against annotations of nerves generated by a board-certified pathologist. The trained model has been applied to 3D pathology datasets of 120 archived prostatectomy specimens from patients with known biochemical recurrence (BCR) outcomes. We are extracting 3D histomorphometric features (i.e. spatial features) from the resulting nerve segmentations and are integrating them with 3D features from previously developed segmentations of glands, nuclei, and/or cancer-enriched tissue regions. We aim to show that 3D features related to PNI are superior to analogous 2D features for PCs prognostication. Citation Format: Sarah S. Chow, Rui Wang, Yujie Zhao, Robert Serafin, Elena Baraznenok, Lydia Lan, Xavier Farre, Kevin Bishop, Gan Gao, Lawrence D. True, Anant Madabhushi, Jonathan T. Liu. Prostate cancer risk stratification based on 3D histomorphometric features related to perineural invasion (PNI) [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2025; Part 1 (Regular Abstracts); 2025 Apr 25-30; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2025;85(8_Suppl_1):Abstract nr 2436.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RedBoy发布了新的文献求助10
刚刚
1秒前
1秒前
苏煜杰发布了新的文献求助10
2秒前
xxxllllll发布了新的文献求助10
3秒前
3秒前
lsl发布了新的文献求助10
4秒前
科研通AI6应助大哥怒据说采纳,获得10
4秒前
wxj完成签到,获得积分20
4秒前
5秒前
7秒前
风吹麦浪发布了新的文献求助10
8秒前
丰富的小甜瓜完成签到,获得积分10
8秒前
桐桐应助大眼瞪小眼采纳,获得10
9秒前
莱比锡大学优秀毕业生完成签到,获得积分20
9秒前
RedBoy完成签到,获得积分10
10秒前
彩色纸飞机完成签到 ,获得积分10
10秒前
Zx_1993应助Snoopy采纳,获得10
11秒前
科研通AI5应助周钰采纳,获得10
11秒前
11秒前
11秒前
加州西梅完成签到,获得积分10
11秒前
Li完成签到,获得积分10
12秒前
12秒前
gaogao完成签到,获得积分10
13秒前
14秒前
sjx1116完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
16秒前
keyantong发布了新的文献求助10
16秒前
17秒前
浮游应助小卡子采纳,获得10
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
科研通AI5应助留胡子的火采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
19秒前
Tourist应助科研通管家采纳,获得150
19秒前
Akim应助科研通管家采纳,获得10
19秒前
英姑应助吴向宽采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074229
求助须知:如何正确求助?哪些是违规求助? 4294374
关于积分的说明 13381128
捐赠科研通 4115792
什么是DOI,文献DOI怎么找? 2253873
邀请新用户注册赠送积分活动 1258494
关于科研通互助平台的介绍 1191343