亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A fault diagnosis method with multi-source data fusion based on hierarchical attention for AUV

计算机科学 传感器融合 断层(地质) 融合 数据挖掘 人工智能 实时计算 语言学 地质学 哲学 地震学
作者
Shaoxuan Xia,Xiaofeng Zhou,Haibo Shi,Shuai Li,Chunhui Xu
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:266: 112595-112595 被引量:15
标识
DOI:10.1016/j.oceaneng.2022.112595
摘要

Multi-source data fusion is an important method to improve the performance of Autonomous Underwater Vehicle (AUV) fault diagnosis. However, most of the current fault diagnosis methods are based on a single data source or treat multi-source data as single. Firstly, we demonstrate the necessity of multi-source data fusion and propose a universal data hierarchy. Then, a hierarchical attention based multi-source data fusion method is proposed for fault diagnosis (HAMFD). The method consists of an encoder–decoder network, a fusion network stacked with encoders and attention mechanisms, and a fault recognition method based on attention distribution. The fusion network uses the encoder and hierarchical attention to extract the deep features, and fuse the features hierarchically. We use the multi-layer attention distribution to explain the fault evaluation and realize fault recognition. A random mask fusion strategy is designed for redundancy and a feature orthogonalization method is proposed for the strong coupling among multiple data sources. The proposed method is validated on the monitoring data of Qianlong-2 AUV obtained during the sea trial in the South China Sea. The fault detection rate is more than 98%, the recognition rate is about 100% for strong faults, and more than 90% for other faults. • For multi-source of AUV data, hierarchical attention is applied for data fusion. • A universal four-layer hierarchy of AUV multi-source data is proposed. • Fault recognition through the interpretability of attention mechanism. • We proposed feature orthogonalization and random mask for the redundancy. • The experiments on Qianlong-2 AUV show effectiveness and superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒服的问雁完成签到,获得积分10
14秒前
狮子发布了新的文献求助10
20秒前
科研通AI5应助cctv18采纳,获得10
23秒前
47秒前
tsy发布了新的文献求助10
52秒前
tsy完成签到,获得积分10
1分钟前
Artin完成签到,获得积分10
1分钟前
小马甲应助重要纸飞机采纳,获得10
1分钟前
科研通AI5应助cctv18采纳,获得10
1分钟前
1分钟前
2分钟前
科研通AI5应助狮子采纳,获得10
2分钟前
聪明的灵寒完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
4分钟前
狮子发布了新的文献求助10
4分钟前
4分钟前
瞿寒完成签到,获得积分10
4分钟前
4分钟前
孙燕应助重要纸飞机采纳,获得10
4分钟前
4分钟前
cctv18完成签到,获得积分0
4分钟前
x夏天完成签到 ,获得积分10
4分钟前
狮子完成签到,获得积分10
5分钟前
4652376完成签到 ,获得积分10
5分钟前
孙燕应助狮子采纳,获得10
5分钟前
Orange应助科研通管家采纳,获得10
5分钟前
SciGPT应助科研通管家采纳,获得10
5分钟前
Benhnhk21完成签到,获得积分10
5分钟前
所所应助谦让的西装采纳,获得10
6分钟前
7分钟前
天天快乐应助轮回1奇点采纳,获得10
8分钟前
9分钟前
kbcbwb2002完成签到,获得积分10
9分钟前
9分钟前
拼搏的败完成签到 ,获得积分10
10分钟前
Jj7完成签到,获得积分10
10分钟前
11分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
Molecular Representations for Machine Learning 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833784
求助须知:如何正确求助?哪些是违规求助? 3376248
关于积分的说明 10492435
捐赠科研通 3095843
什么是DOI,文献DOI怎么找? 1704722
邀请新用户注册赠送积分活动 820084
科研通“疑难数据库(出版商)”最低求助积分说明 771815