Development and validation of a CT-based deep learning radiomics signature to predict lymph node metastasis in oropharyngeal squamous cell carcinoma: a multicenter study

接收机工作特性 随机森林 无线电技术 人工智能 特征选择 计算机科学 医学 支持向量机 降维 决策树 淋巴结 放射科 校准 特征(语言学) 机器学习 内科学 统计 数学 语言学 哲学
作者
Tianzi Jiang,Hexiang Wang,Jie Li,Tongyu Wang,Xiaohong Zhan,Jingqun Wang,Ning Wang,Pei Nie,Shiyu Cui,Xindi Zhao,Dapeng Hao
出处
期刊:Dentomaxillofacial Radiology [Oxford University Press]
标识
DOI:10.1093/dmfr/twae051
摘要

Abstract Objectives Lymph node metastasis (LNM) is a pivotal determinant that influences the treatment strategies and prognosis for oropharyngeal squamous cell carcinoma (OPSCC) patients. This study aims to establish and verify a deep learning (DL) radiomics model for the prediction of LNM in OPSCCs using contrast-enhanced computed tomography (CECT). Methods A retrospective analysis included 279 OPSCC patients from 3 institutions. CECT images were used for handcrafted (HCR) and DL feature extraction. Dimensionality reduction for HCR features used recursive feature elimination (RFE) and least absolute shrinkage and selection operator (LASSO) algorithms, whereas DL feature dimensionality reduction used variance-threshold and RFE algorithms. Radiomics signatures were constructed using six machine learning classifiers. A combined model was then constructed using the screened DL, HCR, and clinical features. The area under the receiver operating characteristic curve (AUC) served to quantify the model’s performance, and calibration curves were utilized to assess its calibration. Results The combined model exhibited robust performance, achieving AUC values of 0.909 (95% CI, 0.861-0.957) in the training cohort, 0.884 (95% CI, 0.800-0.968) in the internal validation cohort, and 0.865 (95% CI, 0.791-0.939) in the external validation cohort. It outperformed both the clinical model and best-performing radiomics model. Moreover, calibration was deemed satisfactory. Conclusions The combined model based on CECT demonstrates the potential to predict LNM in OPSCCs preoperatively, offering a valuable tool for more precise and tailored treatment strategies. Advances in knowledge This study presents a novel combined model integrating clinical factors with DL radiomics, significantly enhancing preoperative LNM prediction in OPSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助咸鱼饭团采纳,获得10
刚刚
77发布了新的文献求助10
3秒前
科研小崽完成签到,获得积分10
3秒前
zoey完成签到,获得积分10
5秒前
科研通AI5应助旺拽硫乃采纳,获得10
6秒前
情怀应助栀初采纳,获得10
6秒前
Aspirin完成签到,获得积分10
7秒前
情怀应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
FashionBoy应助邵邵采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
9秒前
所所应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
Akim应助科研通管家采纳,获得10
10秒前
10秒前
orixero应助cff采纳,获得10
11秒前
wanci应助cff采纳,获得10
11秒前
希望天下0贩的0应助cff采纳,获得10
11秒前
科研通AI2S应助cff采纳,获得10
11秒前
研友_VZG7GZ应助疯狂的海亦采纳,获得10
12秒前
止兮完成签到 ,获得积分10
12秒前
liu完成签到,获得积分10
15秒前
16秒前
16秒前
我是老大应助胖一达采纳,获得10
18秒前
minuxSCI完成签到,获得积分10
18秒前
19秒前
ivy发布了新的文献求助20
20秒前
shbeje完成签到,获得积分10
20秒前
老姚完成签到,获得积分0
21秒前
21秒前
21秒前
高尚发布了新的文献求助10
21秒前
简单诗翠发布了新的文献求助10
23秒前
脑洞疼应助MMZMJY采纳,获得20
23秒前
24秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4208975
求助须知:如何正确求助?哪些是违规求助? 3743063
关于积分的说明 11782283
捐赠科研通 3412825
什么是DOI,文献DOI怎么找? 1872860
邀请新用户注册赠送积分活动 927447
科研通“疑难数据库(出版商)”最低求助积分说明 837084