Pre‐training strategy for antiviral drug screening with low‐data graph neural network: A case study in HIV‐1 K103N reverse transcriptase

广告 药物发现 计算生物学 虚拟筛选 药品 训练集 机器学习 核苷逆转录酶抑制剂 逆转录酶 核苷 对接(动物) 人类免疫缺陷病毒(HIV) 计算机科学 组合化学 化学 药理学 人工智能 生物 生物化学 核糖核酸 医学 病毒学 基因 护理部
作者
Kajjana Boonpalit,Hathaichanok Chuntakaruk,Jiramet Kinchagawat,Peter Wolschann,Supot Hannongbua,Thanyada Rungrotmongkol,Sarana Nutanong
出处
期刊:Journal of Computational Chemistry [Wiley]
标识
DOI:10.1002/jcc.27514
摘要

Abstract Graph neural networks (GNN) offer an alternative approach to boost the screening effectiveness in drug discovery. However, their efficacy is often hindered by limited datasets. To address this limitation, we introduced a robust GNN training framework, applied to various chemical databases to identify potent non‐nucleoside reverse transcriptase inhibitors (NNRTIs) against the challenging K103N‐mutated HIV‐1 RT. Leveraging self‐supervised learning (SSL) pre‐training to tackle data scarcity, we screened 1,824,367 compounds, using multi‐step approach that incorporated machine learning (ML)‐based screening, analysis of absorption, distribution, metabolism, and excretion (ADME) prediction, drug‐likeness properties, and molecular docking. Ultimately, 45 compounds were left as potential candidates with 17 of the compounds were previously identified as NNRTIs, exemplifying the model's efficacy. The remaining 28 compounds are anticipated to be repurposed for new uses. Molecular dynamics (MD) simulations on repurposed candidates unveiled two promising preclinical drugs: one designed against Plasmodium falciparum and the other serving as an antibacterial agent. Both have superior binding affinity compared to anti‐HIV drugs. This conceptual framework could be adapted for other disease‐specific therapeutics, facilitating the identification of potent compounds effective against both WT and mutants while revealing novel scaffolds for drug design and discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanhuazhang完成签到,获得积分10
刚刚
97b1发布了新的文献求助10
2秒前
Er1c发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
3秒前
优雅百招发布了新的文献求助10
3秒前
动听远山发布了新的文献求助10
3秒前
木白应助石莫言采纳,获得10
4秒前
sharks完成签到,获得积分10
5秒前
小蘑菇应助simey采纳,获得10
5秒前
文静的新筠完成签到,获得积分10
6秒前
zzqblue发布了新的文献求助10
7秒前
Er1c完成签到,获得积分10
8秒前
zfj发布了新的文献求助10
9秒前
几一昂完成签到,获得积分10
9秒前
97b1完成签到,获得积分10
10秒前
10秒前
七七完成签到,获得积分10
11秒前
胡霖完成签到,获得积分10
15秒前
18秒前
19秒前
爆米花应助晚棠采纳,获得10
21秒前
LEOhard完成签到,获得积分10
21秒前
Lucas应助simey采纳,获得10
23秒前
灵巧的鸽子完成签到,获得积分10
24秒前
夏夏发布了新的文献求助10
24秒前
24秒前
zfj完成签到,获得积分10
25秒前
z今晚吃哥斯拉1完成签到 ,获得积分10
25秒前
123发布了新的文献求助10
25秒前
26秒前
ljjxd发布了新的文献求助20
26秒前
26秒前
27秒前
Lucas应助juan采纳,获得30
29秒前
ming发布了新的文献求助10
30秒前
Mr_hamster关注了科研通微信公众号
30秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Dynamic Programming and Optimal Control 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830061
求助须知:如何正确求助?哪些是违规求助? 3372573
关于积分的说明 10473365
捐赠科研通 3092171
什么是DOI,文献DOI怎么找? 1701879
邀请新用户注册赠送积分活动 818638
科研通“疑难数据库(出版商)”最低求助积分说明 770986