已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Metadata-conditioned generative models to synthesize anatomically-plausible 3D brain MRIs

元数据 计算机科学 生成模型 生成语法 人工智能 概率逻辑 神经影像学 合成数据 编码(集合论) 机器学习 模式识别(心理学) 神经科学 心理学 集合(抽象数据类型) 程序设计语言 操作系统
作者
Wei Peng,Tomas M. Bosschieter,Jiahong Ouyang,Robert Paul,Edith V. Sullivan,Adolf Pfefferbaum,Ehsan Adeli,Qingyu Zhao,Kilian M. Pohl
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:98: 103325-103325 被引量:7
标识
DOI:10.1016/j.media.2024.103325
摘要

Recent advances in generative models have paved the way for enhanced generation of natural and medical images, including synthetic brain MRIs. However, the mainstay of current AI research focuses on optimizing synthetic MRIs with respect to visual quality (such as signal-to-noise ratio) while lacking insights into their relevance to neuroscience. To generate high-quality T1-weighted MRIs relevant for neuroscience discovery, we present a two-stage Diffusion Probabilistic Model (called BrainSynth) to synthesize high-resolution MRIs conditionally-dependent on metadata (such as age and sex). We then propose a novel procedure to assess the quality of BrainSynth according to how well its synthetic MRIs capture macrostructural properties of brain regions and how accurately they encode the effects of age and sex. Results indicate that more than half of the brain regions in our synthetic MRIs are anatomically plausible, i.e., the effect size between real and synthetic MRIs is small relative to biological factors such as age and sex. Moreover, the anatomical plausibility varies across cortical regions according to their geometric complexity. As is, the MRIs generated by BrainSynth significantly improve the training of a predictive model to identify accelerated aging effects in an independent study. These results indicate that our model accurately capture the brain's anatomical information and thus could enrich the data of underrepresented samples in a study. The code of BrainSynth will be released as part of the MONAI project at https://github.com/Project-MONAI/GenerativeModels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ning00000发布了新的文献求助10
1秒前
2秒前
CipherSage应助忐忑的阑香采纳,获得10
3秒前
西西131401发布了新的文献求助10
6秒前
AB19212发布了新的文献求助10
8秒前
王磊完成签到 ,获得积分10
10秒前
gyh发布了新的文献求助10
16秒前
NexusExplorer应助魔芋采纳,获得10
16秒前
慕青应助忐忑的阑香采纳,获得10
16秒前
何不可应助孟繁荣采纳,获得10
18秒前
CodeCraft应助小宋采纳,获得10
18秒前
xxxxxxlp完成签到,获得积分10
19秒前
爆米花应助小宋采纳,获得10
21秒前
科研通AI5应助tjxx采纳,获得10
21秒前
FashionBoy应助67采纳,获得10
22秒前
22秒前
MH完成签到,获得积分10
23秒前
xiaotudou95发布了新的文献求助60
27秒前
归海剑封发布了新的文献求助10
28秒前
SciGPT应助精明涵双采纳,获得10
29秒前
AaronW完成签到 ,获得积分10
31秒前
无事小神仙完成签到,获得积分10
35秒前
40秒前
汉堡包应助归海剑封采纳,获得10
41秒前
42秒前
呼呼呼完成签到 ,获得积分10
42秒前
43秒前
机灵的幼荷完成签到,获得积分10
44秒前
去过天堂镇的倔强信徒完成签到,获得积分10
45秒前
子凯发布了新的文献求助10
47秒前
tjxx发布了新的文献求助10
47秒前
48秒前
48秒前
迷路的傲南完成签到,获得积分10
50秒前
52秒前
52秒前
53秒前
54秒前
courage完成签到,获得积分10
54秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843103
求助须知:如何正确求助?哪些是违规求助? 3385297
关于积分的说明 10539833
捐赠科研通 3105922
什么是DOI,文献DOI怎么找? 1710740
邀请新用户注册赠送积分活动 823719
科研通“疑难数据库(出版商)”最低求助积分说明 774264