AI-Driven Innovations in Alzheimer's Disease: Integrating Early Diagnosis, Personalized Treatment, and Prognostic Modelling

疾病 阿尔茨海默病 医学 神经科学 重症监护医学 内科学 心理学
作者
Mayur B. Kale,Nitu L. Wankhede,Rupali S. Pawar,Suhas Ballal,Rohit Kumawat,Manish Goswami,Mohammad Khalid,Brijesh G. Taksande,Aman B. Upaganlawar,Milind J. Umekar,Spandana Rajendra Kopalli,Sushruta Koppula
出处
期刊:Ageing Research Reviews [Elsevier BV]
卷期号:: 102497-102497 被引量:50
标识
DOI:10.1016/j.arr.2024.102497
摘要

Alzheimer's disease (AD) presents a significant challenge in neurodegenerative research and clinical practice due to its complex etiology and progressive nature. The integration of artificial intelligence (AI) into the diagnosis, treatment, and prognostic modelling of AD holds promising potential to transform the landscape of dementia care. This review explores recent advancements in AI applications across various stages of AD management. In early diagnosis, AI-enhanced neuroimaging techniques, including MRI, PET, and CT scans, enable precise detection of AD biomarkers. Machine learning models analyze these images to identify patterns indicative of early cognitive decline. Additionally, AI algorithms are employed to detect genetic and proteomic biomarkers, facilitating early intervention. Cognitive and behavioral assessments have also benefited from AI, with tools that enhance the accuracy of neuropsychological tests and analyze speech and language patterns for early signs of dementia. Personalized treatment strategies have been revolutionized by AI-driven approaches. In drug discovery, virtual screening and drug repurposing, guided by predictive modelling, accelerate the identification of effective treatments. AI also aids in tailoring therapeutic interventions by predicting individual responses to treatments and monitoring patient progress, allowing for dynamic adjustment of care plans. Prognostic modelling, another critical area, utilizes AI to predict disease progression through longitudinal data analysis and risk prediction models. The integration of multi-modal data, combining clinical, genetic, and imaging information, enhances the accuracy of these predictions. Deep learning techniques are particularly effective in fusing diverse data types to uncover new insights into disease mechanisms and progression. Despite these advancements, challenges remain, including ethical considerations, data privacy, and the need for seamless integration of AI tools into clinical workflows. This review underscores the transformative potential of AI in AD management while highlighting areas for future research and development. By leveraging AI, the healthcare community can improve early diagnosis, personalize treatments, and predict disease outcomes more accurately, ultimately enhancing the quality of life for individuals with AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小燕完成签到 ,获得积分10
1秒前
2秒前
半夜炒茄子完成签到,获得积分10
2秒前
热心的芙蓉完成签到 ,获得积分10
2秒前
Choi完成签到,获得积分10
4秒前
梦在远方完成签到 ,获得积分10
4秒前
传奇3应助无底洞采纳,获得10
4秒前
AA发布了新的文献求助10
4秒前
郝大的王完成签到 ,获得积分10
5秒前
KSAcc完成签到,获得积分20
6秒前
莫羽倾尘完成签到,获得积分0
6秒前
ningning发布了新的文献求助10
6秒前
6秒前
Choi发布了新的文献求助10
6秒前
飞飞完成签到,获得积分10
7秒前
7秒前
s_yu完成签到,获得积分10
8秒前
封似狮完成签到,获得积分10
8秒前
9秒前
Maple完成签到,获得积分10
10秒前
lif发布了新的文献求助10
11秒前
畸你太美完成签到,获得积分10
12秒前
13秒前
潘票完成签到 ,获得积分10
13秒前
胡图图发布了新的文献求助30
14秒前
15秒前
尊敬依珊完成签到 ,获得积分10
15秒前
weilong完成签到,获得积分20
15秒前
16秒前
123456789完成签到,获得积分10
16秒前
尼古拉耶维奇完成签到 ,获得积分10
18秒前
18秒前
19秒前
momomiao发布了新的文献求助10
20秒前
无情白羊发布了新的文献求助10
20秒前
22秒前
焱焱不忘完成签到 ,获得积分0
23秒前
Aurora.H完成签到,获得积分10
23秒前
淡定的幻枫完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
National standards & grade-level outcomes for K-12 physical education 400
Research Handbook on Law and Political Economy Second Edition 400
Decoding Teacher Well-being in Rural China 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4807219
求助须知:如何正确求助?哪些是违规求助? 4122120
关于积分的说明 12753279
捐赠科研通 3856850
什么是DOI,文献DOI怎么找? 2123440
邀请新用户注册赠送积分活动 1145522
关于科研通互助平台的介绍 1038074