Study on Methods Using Multi-Label Learning for the Classification of Compound Faults in Auxiliary Equipment Pumps of Marine Engine Systems

计算机科学 工程类 汽车工程 人工智能 可靠性工程
作者
Byungmoon Yu,Youngki Kim,Tae Hyun Lee,Youhee Cho,Jihwan Park,Jong-Jik Lee,Jihyuk Park
出处
期刊:Processes [Multidisciplinary Digital Publishing Institute]
卷期号:12 (10): 2161-2161
标识
DOI:10.3390/pr12102161
摘要

The impact of the Fourth Industrial Revolution has brought significant attention to Condition-based maintenance (CBM) for autonomous ships. This study aims to apply CBM to the fuel supply pump of a ship. Five major failures were identified through reliability analysis, and structural analysis was conducted to investigate the mechanisms by which one failure induces another, leading to the identification of three compound failure scenarios. Data were collected on a test bed under normal conditions, five single failure conditions, and three compound failure conditions. The acceleration data from the experiments were transformed into 2D arrays corresponding to a single pump rotation, and a method was proposed to compensate for the errors accumulated during the repeated array generation. The data were vectorized using a simplified CNN structure and applied to six multi-label learning methods, which were compared to identify the optimal approach. Among the six methods, the Label Powerset (LP) was found to be the most effective. Multi-label learning captures correlations between labels, similar to the failure-inducing mechanisms learned from structural analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研一路生花完成签到,获得积分10
1秒前
小雨完成签到,获得积分10
1秒前
小燕子完成签到,获得积分10
1秒前
ycy2019完成签到,获得积分10
2秒前
Aurora发布了新的文献求助10
2秒前
3秒前
小宋发布了新的文献求助100
5秒前
FashionBoy应助缥缈的鱼采纳,获得10
5秒前
wankai完成签到,获得积分10
5秒前
冷静的莞完成签到 ,获得积分0
5秒前
8秒前
10秒前
小马甲应助yyds采纳,获得30
10秒前
LLL完成签到,获得积分10
13秒前
13秒前
ch关闭了ch文献求助
13秒前
mao发布了新的社区帖子
14秒前
科研通AI5应助Aurora采纳,获得10
15秒前
hanzhipad应助NN采纳,获得30
17秒前
夹心就是嘉欣呀完成签到,获得积分10
17秒前
123完成签到,获得积分10
18秒前
请叫我朱杰完成签到,获得积分10
18秒前
19秒前
yy发布了新的文献求助10
19秒前
22秒前
22秒前
约翰发布了新的文献求助30
23秒前
Owen应助活力的小蝴蝶采纳,获得10
24秒前
香蕉觅云应助莫愁采纳,获得10
25秒前
欣欣然完成签到,获得积分20
25秒前
26秒前
27秒前
醉熏的灵完成签到 ,获得积分10
29秒前
CPGF完成签到 ,获得积分10
30秒前
Crystal完成签到,获得积分10
31秒前
zml发布了新的文献求助10
31秒前
细心的雨竹完成签到,获得积分10
34秒前
35秒前
35秒前
顾矜应助清脆若南采纳,获得10
36秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846128
求助须知:如何正确求助?哪些是违规求助? 3388519
关于积分的说明 10553286
捐赠科研通 3109083
什么是DOI,文献DOI怎么找? 1713334
邀请新用户注册赠送积分活动 824702
科研通“疑难数据库(出版商)”最低求助积分说明 774982