纳米纤维
静电纺丝
材料科学
膜
生物医学工程
牙槽
纳米技术
复合材料
牙科
化学
医学
生物化学
聚合物
作者
Xiaoxia Zhong,Yiyu Lu,Haiyun Lin,Ziwei Wu,Yicai Luo,Zhimao Ye,Hongbing Liao,Hao Li
标识
DOI:10.1021/acsbiomaterials.4c01918
摘要
The impaired healing of alveolar bone defects in diabetic patients has attracted considerable attention, with Mogroside V (MV) emerging as a promising candidate due to its demonstrated antioxidation, hypoglycemic, and anti-inflammatory properties in patients with diabetes mellitus. To address the limitations of oral MV administration, such as low bioavailability, rapid metabolism, and a short half-life, we developed a nanofiber membrane utilizing electrospinning technology for topical application by preparing membranes using MV, chitosan (CS), nanohydroxyapatite (HA), and poly(vinyl alcohol) (PVA) as raw materials to prolong the effect of MV and enhance bone regeneration in diabetic patients. The MV/HA/PVA/CS exhibited a good fiber diameter, prolonged drug release, and suitable degradation time, along with other favorable properties. In vitro experiments revealed its excellent biocompatibility, effectiveness in promoting osteogenesis, upregulation of osteogenic and anti-inflammatory genes, and concurrent downregulation of pro-inflammatory genes. In vivo evaluations further confirmed its ability to effectively modulate the diabetic microenvironment, reduce bone damage, and facilitate anti-inflammatory effects and alveolar bone regeneration in diabetics. These findings suggest that a nanofiber membrane with sustained release of MV may serve as a promising biomaterial, providing new insights into improving the healing of diabetic alveolar bone defects.
科研通智能强力驱动
Strongly Powered by AbleSci AI