Predicting band structures for 2D Photonic Crystals via Deep Learning

光子晶体 材料科学 深度学习 光子学 光电子学 纳米技术 人工智能 计算机科学
作者
Yue-Qi Wang,Richard V. Craster,Guanglian Li
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2411.06063
摘要

Photonic crystals (PhCs) are periodic dielectric structures that exhibit unique electromagnetic properties, such as the creation of band gaps where electromagnetic wave propagation is inhibited. Accurately predicting dispersion relations, which describe the frequency and direction of wave propagation, is vital for designing innovative photonic devices. However, traditional numerical methods, like the Finite Element Method (FEM), can encounter significant computational challenges due to the multiple scales present in photonic crystals, especially when calculating band structures across the entire Brillouin zone. To address this, we propose a supervised learning approach utilizing U-Net, along with transfer learning and Super-Resolution techniques, to forecast dispersion relations for 2D PhCs. Our model reduces computational expenses by producing high-resolution band structures from low-resolution data, eliminating the necessity for fine meshes throughout the Brillouin zone. The U-Net architecture enables the simultaneous prediction of multiple band functions, enhancing efficiency and accuracy compared to existing methods that handle each band function independently. Our findings demonstrate that the proposed model achieves high accuracy in predicting the initial band functions of 2D PhCs, while also significantly enhancing computational efficiency. This amalgamation of data-driven and traditional numerical techniques provides a robust framework for expediting the design and optimization of photonic crystals. The approach underscores the potential of integrating deep learning with established computational physics methods to tackle intricate multiscale problems, establishing a new benchmark for future PhC research and applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烟花应助朴素懿轩采纳,获得10
刚刚
hhhhhh完成签到,获得积分10
刚刚
刚刚
木子林夕完成签到,获得积分10
刚刚
研友_LNMPD8完成签到,获得积分10
1秒前
2秒前
年年完成签到,获得积分10
2秒前
TG303完成签到,获得积分10
3秒前
仁爱诗云完成签到,获得积分10
3秒前
淋湿巴黎发布了新的文献求助10
3秒前
别忘了吃胶囊完成签到,获得积分10
3秒前
飞天817发布了新的文献求助10
3秒前
搜集达人应助ieee拯救者采纳,获得10
4秒前
hetao286发布了新的文献求助10
4秒前
浮游应助Cai采纳,获得10
4秒前
巴比龙完成签到,获得积分10
4秒前
狄语蕊发布了新的文献求助50
4秒前
郭晓峰完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
mumu完成签到,获得积分10
5秒前
开心绿柳完成签到,获得积分10
5秒前
dyk完成签到,获得积分10
5秒前
英俊的铭应助乐观宛海采纳,获得10
5秒前
神勇马里奥完成签到 ,获得积分10
5秒前
IVY1300完成签到,获得积分10
6秒前
aurora完成签到,获得积分10
6秒前
依克发布了新的文献求助10
6秒前
小狗说好运来完成签到 ,获得积分10
6秒前
dd完成签到,获得积分10
7秒前
小强x完成签到,获得积分10
7秒前
果果完成签到,获得积分10
7秒前
7秒前
我是老大应助楼旭尧采纳,获得10
7秒前
SciGPT应助空空鱼采纳,获得10
7秒前
科研通AI2S应助wesley采纳,获得10
7秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402234
求助须知:如何正确求助?哪些是违规求助? 4520826
关于积分的说明 14082112
捐赠科研通 4434847
什么是DOI,文献DOI怎么找? 2434434
邀请新用户注册赠送积分活动 1426649
关于科研通互助平台的介绍 1405392