Deep reinforcement learning-based memetic algorithm for energy-aware flexible job shop scheduling with multi-AGV

模因算法 作业车间调度 强化学习 进化算法 计算机科学 调度(生产过程) 水准点(测量) 帕累托原理 数学优化 机器学习 人工智能 数学 大地测量学 计算机网络 布线(电子设计自动化) 地理
作者
Fayong Zhang,Rui Li,Wenyin Gong
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:189: 109917-109917 被引量:26
标识
DOI:10.1016/j.cie.2024.109917
摘要

The integration of manufacturing and logistics scheduling issues in shop operations has garnered considerable attention. Concurrently, escalating concerns about global warming have propelled the emergence of green manufacturing as a critical challenge. Notably, extant research in this domain lacks an incorporation of green metrics within the framework of manufacturing and logistics-integrated scheduling. Furthermore, the determination of a critical block remains a challenging aspect, with an absence of consideration for a neighborhood structure founded on the critical block. Moreover, prior endeavors have predominantly relied on Q-learning to augment evolutionary algorithms, a strategy criticized for its limited learning capacity. Consequently, this study addresses these gaps by presenting an energy-efficient flexible job Shop scheduling with multi-autonomous guided vehicles (EFJS-AGV). The primary objectives are the simultaneous minimization of makespan and total energy consumption. To tackle this NP-hard problem, a deep Q-network-based memetic algorithm is proposed. The devised algorithm incorporates several distinctive features. Firstly, the strength Pareto evolutionary algorithm (SPEA2) is employed to swiftly explore the objective space, enhancing convergence and diversity. Secondly, four distinct local search operators based on critical paths and blocks are devised to efficiently reduce makespan. Thirdly, deep reinforcement learning is harnessed to understand the interplay between solutions and action selection. This understanding aids the evolutionary algorithm in selecting the most optimal operator. The efficacy of the proposed algorithm is rigorously evaluated through a comparative analysis with five state-of-the-art algorithms. The assessment is conducted on two benchmark datasets encompassing 20 instances. The numerical experimental results affirm the effectiveness of the proposed enhancements and algorithms. Furthermore, the superior performance of the proposed algorithm in addressing the EFJS-AGV substantiates its robustness and applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shinble发布了新的文献求助10
3秒前
3秒前
学渣小Robert完成签到,获得积分10
3秒前
小二郎应助爱科研的罗罗采纳,获得10
4秒前
4秒前
llwxx发布了新的文献求助10
4秒前
张萌发布了新的文献求助10
4秒前
5秒前
Chen完成签到,获得积分10
5秒前
5秒前
宁羽完成签到,获得积分10
7秒前
forest完成签到,获得积分10
7秒前
诺奇发布了新的文献求助10
8秒前
9秒前
小明完成签到,获得积分10
9秒前
Julo完成签到,获得积分10
10秒前
10秒前
ZXK完成签到 ,获得积分10
11秒前
11秒前
大树梨完成签到,获得积分10
11秒前
11秒前
12秒前
曾经的碧萱完成签到,获得积分20
13秒前
高兴123完成签到,获得积分10
13秒前
13秒前
13秒前
Lydia完成签到,获得积分10
14秒前
15秒前
hetao286发布了新的文献求助10
16秒前
尔沁完成签到,获得积分20
16秒前
16秒前
呆呆发布了新的文献求助10
17秒前
新芝发布了新的文献求助10
18秒前
孙颢然完成签到 ,获得积分10
18秒前
优雅的废完成签到,获得积分10
18秒前
长长的名字完成签到 ,获得积分10
18秒前
Shina完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949342
求助须知:如何正确求助?哪些是违规求助? 3494710
关于积分的说明 11073545
捐赠科研通 3225363
什么是DOI,文献DOI怎么找? 1783021
邀请新用户注册赠送积分活动 867306
科研通“疑难数据库(出版商)”最低求助积分说明 800739