A unified deep learning framework for water quality prediction based on time-frequency feature extraction and data feature enhancement

特征(语言学) 特征提取 计算机科学 数据挖掘 模式识别(心理学) 人工智能 水质 特征选择 编码器 生态学 哲学 语言学 生物 操作系统
作者
Rui Xu,Shengri Hu,Hang Wan,Yulei Xie,Yanpeng Cai,Jianhui Wen
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:351: 119894-119894 被引量:22
标识
DOI:10.1016/j.jenvman.2023.119894
摘要

Deep learning methods exhibited significant advantages in mapping highly nonlinear relationships with acceptable computational speed, and have been widely used to predict water quality. However, various model selection and construction methods resulted in differences in prediction accuracy and performance. Hence, a unified deep learning framework for water quality prediction was established in the paper, including data processing module, feature enhancement module, and data prediction module. In the established model, the data processing module based on wavelet transform method was applied to decomposing complex nonlinear meteorology, hydrology, and water quality data into multiple frequency domain signals for extracting self characteristics of data cyclic and fluctuations. The feature enhancement module based on Informer Encoder was used to enhance feature encoding of time series data in different frequency domains to discover global time dependent features of variables. Finally, the data prediction module based on the stacked bidirectional long and short term memory network (SBiLSTM) method was employed to strengthen the local correlation of feature sequences and predict the water quality. The established model framework was applied in Lijiang River in Guilin, China. The maximum relative errors between the predicted and observed values for dissolved oxygen (DO), chemical oxygen demand (CODMn) were 12.4% and 20.7%, suggesting a satisfactory prediction performance of the established model. The validation results showed that the established model was superior to all other models in terms of prediction accuracy with RMSE values 0.329, 0.121, MAE values 0.217, 0.057, SMAPE values 0.022, 0.063 for DO and CODMn, respectively. Ablation tests confirmed the necessity and rationality of each module for the established model framework. The established method provided a unified deep learning framework for water quality prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助awedfa采纳,获得10
5秒前
8秒前
淡然冬灵完成签到,获得积分10
10秒前
11秒前
手拿大炮完成签到,获得积分10
11秒前
北还北发布了新的文献求助10
11秒前
香蕉觅云应助zh采纳,获得10
11秒前
烟花应助仝言采纳,获得10
12秒前
手拿大炮发布了新的文献求助10
14秒前
14秒前
倒霉蛋完成签到,获得积分10
14秒前
情怀应助dew采纳,获得10
14秒前
手术刀完成签到 ,获得积分10
16秒前
16秒前
菜菜发布了新的文献求助10
17秒前
嘿嘿嘿完成签到,获得积分10
18秒前
学分完成签到 ,获得积分10
19秒前
jw完成签到,获得积分10
20秒前
Fezz发布了新的文献求助10
20秒前
fengpu完成签到,获得积分10
22秒前
沧笙踏歌应助嘿嘿嘿采纳,获得10
22秒前
吉师大_科研完成签到,获得积分10
23秒前
24秒前
传奇3应助菜菜采纳,获得10
26秒前
Owen应助Fezz采纳,获得10
27秒前
yar应助liuzengzhang666采纳,获得10
27秒前
烟波钓客完成签到,获得积分10
28秒前
yyj完成签到,获得积分10
30秒前
淡淡的小蘑菇完成签到 ,获得积分10
31秒前
jzyy完成签到 ,获得积分10
32秒前
清秀不言完成签到 ,获得积分10
32秒前
drbrianlau完成签到,获得积分10
33秒前
华仔应助zh采纳,获得10
33秒前
菜菜完成签到,获得积分20
35秒前
鲁滨逊完成签到 ,获得积分10
37秒前
羲月完成签到,获得积分10
38秒前
38秒前
Fezz完成签到,获得积分10
39秒前
41秒前
殷启维完成签到,获得积分10
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511071
关于积分的说明 11156136
捐赠科研通 3245633
什么是DOI,文献DOI怎么找? 1793097
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268