Facts and Hopes in Using Omics to Advance Combined Immunotherapy Strategies

免疫疗法 组学 计算生物学 计算机科学 癌症免疫疗法 生物信息学 癌症 数据科学 医学 生物 内科学
作者
Ryan C. Augustin,Wesley L. Cai,Jason J. Luke,Riyue Bao
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:30 (9): 1724-1732 被引量:1
标识
DOI:10.1158/1078-0432.ccr-22-2241
摘要

Abstract The field of oncology has been transformed by immune checkpoint inhibitors (ICI) and other immune-based agents; however, many patients do not receive a durable benefit. While biomarker assessments from pivotal ICI trials have uncovered certain mechanisms of resistance, results thus far have only scraped the surface. Mechanisms of resistance are as complex as the tumor microenvironment (TME) itself, and the development of effective therapeutic strategies will only be possible by building accurate models of the tumor-immune interface. With advancement of multi-omic technologies, high-resolution characterization of the TME is now possible. In addition to sequencing of bulk tumor, single-cell transcriptomic, proteomic, and epigenomic data as well as T-cell receptor profiling can now be simultaneously measured and compared between responders and nonresponders to ICI. Spatial sequencing and imaging platforms have further expanded the dimensionality of existing technologies. Rapid advancements in computation and data sharing strategies enable development of biologically interpretable machine learning models to integrate data from high-resolution, multi-omic platforms. These models catalyze the identification of resistance mechanisms and predictors of benefit in ICI-treated patients, providing scientific foundation for novel clinical trials. Moving forward, we propose a framework by which in silico screening, functional validation, and clinical trial biomarker assessment can be used for the advancement of combined immunotherapy strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纪瑄完成签到,获得积分10
刚刚
zhangxu09a发布了新的文献求助10
1秒前
今后应助meng采纳,获得10
2秒前
Akim应助研友_ZragOn采纳,获得10
3秒前
wzswzs发布了新的文献求助10
4秒前
nikonikoni发布了新的文献求助10
4秒前
骑着蚂蚁追大象完成签到,获得积分10
5秒前
千夜冰柠萌完成签到,获得积分10
7秒前
7秒前
8秒前
华仔应助方可采纳,获得10
10秒前
Serena完成签到 ,获得积分10
11秒前
bkagyin应助ps采纳,获得10
11秒前
研友_ZragOn发布了新的文献求助10
11秒前
赘婿应助kong采纳,获得10
11秒前
研友_ZGRqKn完成签到,获得积分10
12秒前
懒羊羊大王完成签到,获得积分10
12秒前
小Q啊啾发布了新的文献求助10
13秒前
lxl1996发布了新的文献求助10
17秒前
18秒前
李健应助sdl采纳,获得10
18秒前
leyellows完成签到 ,获得积分10
20秒前
foxdaopo完成签到,获得积分10
21秒前
ws完成签到,获得积分20
22秒前
能干的谷蕊完成签到 ,获得积分10
24秒前
BioCell完成签到,获得积分10
24秒前
Akim应助含糊的安柏采纳,获得10
24秒前
CipherSage应助angelsknight采纳,获得30
26秒前
28秒前
677完成签到 ,获得积分10
32秒前
32秒前
tjusasa完成签到,获得积分10
32秒前
32秒前
lzx完成签到,获得积分10
34秒前
34秒前
脑洞疼应助语上采纳,获得30
35秒前
sdl发布了新的文献求助10
36秒前
36秒前
稳重向南发布了新的文献求助10
37秒前
达不溜qp完成签到 ,获得积分10
38秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838497
求助须知:如何正确求助?哪些是违规求助? 3380812
关于积分的说明 10516014
捐赠科研通 3100441
什么是DOI,文献DOI怎么找? 1707496
邀请新用户注册赠送积分活动 821784
科研通“疑难数据库(出版商)”最低求助积分说明 772947