MSCA-YOLO: A YOLOv5-based Steel Defect Detection Method Enhanced with Multi-Scale Feature Extraction and Contextual Augmentation

萃取(化学) 比例(比率) 计算机科学 人工智能 特征(语言学) 模式识别(心理学) 化学 色谱法 地理 地图学 哲学 语言学
作者
Yao Wang,Chengxin Liang,Xiao Wang,Yushan Liu
出处
期刊:Journal of Imaging Science and Technology [Society for Imaging Science and Technology]
卷期号:68 (4): 1-10
标识
DOI:10.2352/j.imagingsci.technol.2024.68.4.040402
摘要

Steel surface defect detection in industrial quality control has always been a challenging objective detection task in the field of computer vision. However, unlike other detection problems, some surface defects on steel are relatively small compared to the entire inspection object, leading to less prominent defect features in the detection. To address these issues, we propose a YOLOv5-based steel defect detection method enhanced with multi-scale feature extraction and contextual augmentation (MSCA-YOLO). Specifically, adopting the YOLOv5 as the backbone network, we first add the C3-RFE to expand the receptive. Then, we design a neck network structure via combining multi-scale guided upsampling, which effectively enhances the model’s ability to handle multi-scale features and improves the model’s feature extraction ability for small defects. Finally, we propose a context mechanism that provides the model with a deeper context analysis capability, offering richer up-and-down information. The experiments on the NEU-DET dataset show that MSCA-YOLO achieves a mean Average Precision of 0.645 while maintaining rapid detection, especially at an Intersection over Union threshold of 0.5. It also exhibits substantial improvements in Precision compared to YOLOv5 across six defect types: Crazing (18.5% increase), Inclusion (1.2% increase), Patches (1.9% increase), Pitted_Surface (7.8% increase), Rolled-in_Scale (8.9% increase), and Scratches (6.5% increase). This achievement marks the efficiency and reliability of MSCA-YOLO in automated steel surface defect detection, providing a new solution for real-time inspection of steel surface defects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助南国有佳人采纳,获得10
刚刚
汉堡包应助南国有佳人采纳,获得10
刚刚
刚刚
sln发布了新的文献求助10
1秒前
1秒前
小小完成签到,获得积分10
1秒前
机智的夜云完成签到,获得积分10
1秒前
开心的金发布了新的文献求助10
3秒前
Yola完成签到,获得积分10
3秒前
我是老大应助小白采纳,获得10
5秒前
秀丽静曼完成签到,获得积分10
6秒前
7秒前
南国有佳人完成签到,获得积分10
8秒前
Jasper应助kikiii采纳,获得10
9秒前
10秒前
10秒前
香蕉觅云应助从容的文涛采纳,获得10
10秒前
11秒前
风味蟹黄堡完成签到,获得积分10
11秒前
sln完成签到,获得积分10
12秒前
wuyisha完成签到,获得积分10
12秒前
12秒前
蓝色白羊完成签到,获得积分10
13秒前
iiinns发布了新的文献求助10
14秒前
15秒前
mubiguo发布了新的文献求助10
15秒前
许甜甜鸭应助hi_traffic采纳,获得10
15秒前
kk完成签到,获得积分10
15秒前
16秒前
16秒前
阔达棉花糖完成签到,获得积分10
16秒前
16秒前
toda完成签到,获得积分10
16秒前
科研通AI5应助芒果采纳,获得10
17秒前
17秒前
Kingrain发布了新的文献求助10
17秒前
粗心的语薇完成签到,获得积分10
17秒前
上官子默完成签到,获得积分10
18秒前
小王发布了新的文献求助10
19秒前
Banana完成签到,获得积分10
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817476
求助须知:如何正确求助?哪些是违规求助? 3360822
关于积分的说明 10409731
捐赠科研通 3078922
什么是DOI,文献DOI怎么找? 1690869
邀请新用户注册赠送积分活动 814197
科研通“疑难数据库(出版商)”最低求助积分说明 768065