An Object Fine-Grained Change Detection Method Based on Frequency Decoupling Interaction for High-Resolution Remote Sensing Images

计算机科学 变更检测 稳健性(进化) 增采样 人工智能 小波 小波变换 模式识别(心理学) 计算机视觉 目标检测 特征提取 图像(数学) 生物化学 基因 化学
作者
Yingjie Tang,Shou Feng,Chunhui Zhao,Yuanze Fan,Qian Shi,Wei Li,Ran Tao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:11
标识
DOI:10.1109/tgrs.2023.3337816
摘要

Change detection is a prominent research direction in the field of remote sensing image processing. However, most current change detection methods focus solely on detecting changes without being able to differentiate the types of changes, such as "appear" or "disappear" of objects. Accurate detection of change types is of great significance in guiding decision-making processes. To address this issue, this paper introduces the object fine-grained change detection (OFCD) task and proposes a method based on frequency decoupling interaction (FDINet). Specifically, in order to enhance the model’s ability to detect change types and improve its robustness to temporal information, a temporal exchange framework is designed. Additionally, to better capture spatial-temporal correlation in bi-temporal features, a wavelet interaction module (WIM) is proposed. This module utilizes wavelet transform for frequency decoupling, separating features into different components based on their frequency magnitudes. Then the module applies different interaction methods according to the characteristics of these frequency components. Finally, to aggregate complementary information from different-scale feature maps and enhance the representational capabilities of the extracted features, a feature aggregation and upsampling module (FAUM) is adopted. A series of experiments show the superiority of FDINet over most state-of-the-art methods, achieving good results on three different datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dengxsh完成签到,获得积分10
刚刚
1秒前
哈基米德应助Hiccup采纳,获得10
1秒前
丰富的灵枫完成签到,获得积分20
2秒前
哈哈哈完成签到,获得积分20
2秒前
3秒前
风中的青完成签到,获得积分10
3秒前
糊涂的剑发布了新的文献求助10
4秒前
Joanna完成签到,获得积分10
4秒前
Wri发布了新的文献求助10
4秒前
神勇不二完成签到,获得积分10
4秒前
Caism完成签到,获得积分10
4秒前
zhangge发布了新的文献求助10
5秒前
dongdong发布了新的文献求助10
5秒前
高成浩完成签到,获得积分10
7秒前
Akim应助红炉点血采纳,获得10
7秒前
哈哈哈发布了新的文献求助10
8秒前
特洛伊完成签到,获得积分10
8秒前
领导范儿应助研友_5Zl9D8采纳,获得10
8秒前
丘比特应助糊涂的剑采纳,获得10
9秒前
9秒前
appleye完成签到,获得积分10
9秒前
10秒前
mokLee63发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
Jia完成签到,获得积分20
11秒前
11秒前
12秒前
景略1234完成签到,获得积分10
12秒前
糊涂的尔蝶完成签到,获得积分10
13秒前
浮世清欢发布了新的文献求助10
13秒前
特洛伊发布了新的文献求助10
13秒前
13秒前
13秒前
nature完成签到,获得积分10
14秒前
高成浩发布了新的文献求助10
14秒前
14秒前
15秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4122007
求助须知:如何正确求助?哪些是违规求助? 3660024
关于积分的说明 11585369
捐赠科研通 3361254
什么是DOI,文献DOI怎么找? 1846969
邀请新用户注册赠送积分活动 911542
科研通“疑难数据库(出版商)”最低求助积分说明 827474