卤化物
活化能
扩散
钙钛矿(结构)
光致发光
材料科学
分析化学(期刊)
化学
带隙
动力学
分解
锡
无机化学
物理化学
光电子学
热力学
结晶学
环境化学
冶金
有机化学
量子力学
物理
作者
Yuhuan Meng,Preetham Sunkari,Marina Meilă,Hugh W. Hillhouse
标识
DOI:10.1109/pvsc48320.2023.10359838
摘要
Mixed\ntin–lead halide perovskite materials, with\na bandgap\nof ∼1.2–1.3 eV, are promising absorber materials for\nsolar cells, with their bandgap ideally matched to the solar spectrum,\nand for the low-bandgap part of all-perovskite tandem solar cells.\nHowever, tin(II) is not very stable and can be oxidized to tin(IV),\nresulting in the decomposition of the perovskite. Here, we evaluate\nthe reaction products and reaction kinetics of the decomposition of\nFA<sub>0.75</sub>Cs<sub>0.25</sub>Pb<sub>0.5</sub>Sn<sub>0.5</sub>I<sub>3</sub> thin films in response to exposure to oxygen,\nmoisture, and illumination using in situ measurements of optical transmittance,\nX-ray diffraction, and UV-vis-NIR spectroscopy. We found the decomposition\noccurs by a dry oxidation pathway (1 × 10<sup>–9</sup> mol/m<sup>2</sup>·s at 25 °C in air) and a water-accelerated\noxidation pathway (3 × 10<sup>–9</sup> mol/m<sup>2</sup>·s at 25 °C in 50% RH air). An analytical kinetic rate\nexpression for the decomposition is derived and validated with a mean\ntest error of 18%. Further, we develop a predictive model of the decay\nof the ambipolar diffusion length, in which the chemical decomposition\nrate expression is the most dominant feature. The results highlight\nthe importance and utility of quantitative measurements of perovskite\ndegradation.
科研通智能强力驱动
Strongly Powered by AbleSci AI