Predicting prognosis of light-chain cardiac amyloidosis by magnetic resonance imaging and deep learning

磁共振成像 过度拟合 人工智能 医学 内科学 心脏淀粉样变性 心力衰竭 心脏病学 放射科 计算机科学 人工神经网络
作者
Shuo Wang,Chengcai Liu,Yubo Guo,H. S. Sang,Xiao Li,Lu Lin,Xiaohu Li,Xinwei Li,Long Jiang Zhang,Jie Tian,Li J,Yining Wang
出处
期刊:European Journal of Echocardiography [Oxford University Press]
卷期号:26 (11): 1771-1781 被引量:1
标识
DOI:10.1093/ehjci/jeaf248
摘要

Abstract Aims Light-chain cardiac amyloidosis (AL-CA) is a progressive heart disease with high mortality rate and variable prognosis. The presently used Mayo staging method can only stratify patients into four stages, highlighting the necessity for a more individualized prognosis prediction method. We aim to develop a novel deep learning (DL) model for the whole-heart analysis of cardiovascular magnetic resonance-derived late gadolinium enhancement (LGE) images to predict individualized prognosis in AL-CA. Methods and results This study included 394 patients with AL-CA who underwent standardized chemotherapy and had at least 1 year of follow-up. The approach involved automated segmentation of the heart in LGE images and feature extraction using a Transformer-based DL model. To enhance feature differentiation and mitigate overfitting, a contrastive pretraining strategy was employed to accentuate distinct features between patients with different prognoses while clustering similar cases. Finally, an ensemble learning strategy was used to integrate predictions from 15 models at 15 survival time points into a comprehensive prognostic model. In the testing set of 79 patients, the DL model achieved a concordance index (C-index) of 0.91 and an area under the curve (AUC) of 0.95 in predicting 2.6-year survival (HR: 2.67), outperforming the Mayo model (C-index = 0.65; AUC = 0.71). The DL model effectively distinguished patients with the same Mayo stage but different prognoses. Visualization techniques revealed that the model captures complex, high-dimensional prognostic features across multiple cardiac regions, extending beyond the amyloid-affected areas. Conclusion This fully automated DL model can predict individualized prognosis of AL-CA through LGE images, which complements the presently used Mayo staging method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lll发布了新的文献求助10
刚刚
aaa完成签到,获得积分10
1秒前
琳琳发布了新的文献求助100
2秒前
小二郎应助轻抚女高脸颊采纳,获得10
3秒前
1569lei发布了新的文献求助10
4秒前
隐形曼青应助皮皮采纳,获得10
4秒前
独孤妖月完成签到,获得积分10
4秒前
4秒前
6秒前
干净问枫发布了新的文献求助10
6秒前
孤独音响完成签到,获得积分10
6秒前
6秒前
沉静的皮卡丘完成签到,获得积分10
7秒前
HHHHH发布了新的文献求助10
8秒前
9秒前
动听阑悦发布了新的文献求助10
9秒前
深情安青应助YY采纳,获得10
9秒前
李健应助jam采纳,获得10
9秒前
浮游应助独孤妖月采纳,获得10
10秒前
帅气的plum发布了新的文献求助10
10秒前
wdjz1207发布了新的文献求助10
10秒前
lulu8809完成签到,获得积分10
10秒前
10秒前
guancp发布了新的文献求助10
11秒前
22222发布了新的文献求助20
11秒前
11秒前
12秒前
明亮若枫发布了新的文献求助20
12秒前
niko发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
涅槃完成签到,获得积分20
14秒前
14秒前
小新应助Ayuyu采纳,获得10
14秒前
共享精神应助琳琳采纳,获得20
14秒前
任性的稀发布了新的文献求助10
15秒前
15秒前
酷波er应助ddy采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513335
求助须知:如何正确求助?哪些是违规求助? 4607628
关于积分的说明 14506095
捐赠科研通 4543202
什么是DOI,文献DOI怎么找? 2489411
邀请新用户注册赠送积分活动 1471350
关于科研通互助平台的介绍 1443374