Surface roughness classification of drilling for CNC machine tools based on RepViT and dual-channel STFT-GAF feature fusion

对偶(语法数字) 特征(语言学) 钻探 表面粗糙度 频道(广播) 计算机科学 表面光洁度 人工智能 融合 曲面(拓扑) 模式识别(心理学) 材料科学 地质学 工程制图 数学 工程类 几何学 电信 复合材料 冶金 艺术 哲学 文学类 语言学
作者
Gang Chen,Zhihao Chen,Peng Wang,Wenyu Wang,Haijun Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (8): 085102-085102
标识
DOI:10.1088/1361-6501/adeffe
摘要

Abstract Surface roughness serves as a critical indicator of part processing quality in modern manufacturing, directly impacting product performance and service life. Traditional prediction methods suffer from issues such as insufficient feature extraction, high computational costs, and an imbalance between prediction accuracy and efficiency under complex nonlinear machining conditions. To address these challenges, this study proposes a surface roughness classification and prediction method based on the innovative combination of short-time Fourier transform-Gram angle field (STFT-GAF) dual-channel fusion and lightweight RepViT, and designs a multi-source heterogeneous data acquisition system to obtain dynamic data during the machining process. This method utilizes the STFT to convert the vibration signals of the computer numerical control (CNC) machine tool spindle into a spectrum diagram, capturing the local time–frequency characteristics of the signal. Simultaneously, the GAF encodes one-dimensional time-series data into a two-dimensional image matrix, extracting time-series dependencies and periodic features to achieve complementary feature extraction across dual channels. Based on this, a lightweight RepViT model is introduced, which reconstructs the multi-head attention mechanism through reparameterization techniques, maintaining high accuracy while significantly reducing computational and parameter costs. The model performs convolution operations on both the spectral plot and Gram angle field plot through dual-channel processing, achieving deep feature fusion. It also employs an improved RepViT model and hierarchical attention mechanism to perform global-local feature extraction, significantly enhancing feature representation capabilities. Comparison experiments show that compared with network models such as DenseNet, ShuffleNet, and ResNet, this method achieves training accuracy, validation accuracy, and testing accuracy of 82.9%, 80.4%, and 80.0%, respectively, in surface roughness classification prediction. With improvements of 5.0%, 12.2%, and 12.5% over the next-best model, respectively, fully validating the effectiveness of the innovative combination of three-axis STFT-GAF dual-channel fusion and lightweight RepViT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www发布了新的文献求助10
2秒前
小二郎应助Ruoru采纳,获得10
3秒前
小胖鱼发布了新的文献求助10
6秒前
天天快乐应助刘梦钊采纳,获得10
6秒前
8秒前
Lucas应助复杂的海采纳,获得10
10秒前
10秒前
10秒前
想要用不完的积分完成签到,获得积分10
10秒前
小蘑菇应助与自我同频采纳,获得10
12秒前
13秒前
13秒前
悲凉的大娘完成签到 ,获得积分10
13秒前
13秒前
13秒前
Baituole77发布了新的文献求助10
14秒前
笑点低的代容完成签到,获得积分10
14秒前
14秒前
糖糖糖唐完成签到,获得积分10
14秒前
Xiong完成签到,获得积分10
14秒前
bbll完成签到,获得积分10
14秒前
14秒前
勤奋小懒虫完成签到,获得积分10
16秒前
传奇3应助nakeyi采纳,获得10
16秒前
科研公主发布了新的文献求助10
16秒前
18秒前
刘梦钊发布了新的文献求助10
18秒前
南塘发布了新的文献求助10
18秒前
优美平凡发布了新的文献求助10
19秒前
Ruoru发布了新的文献求助10
19秒前
19秒前
个性完成签到,获得积分10
19秒前
所所应助www采纳,获得10
20秒前
dada完成签到,获得积分10
21秒前
21秒前
笑点低歌曲完成签到,获得积分10
23秒前
Baituole77完成签到,获得积分10
23秒前
Henry完成签到,获得积分10
24秒前
大个应助刘梦钊采纳,获得10
25秒前
麻木子发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604157
求助须知:如何正确求助?哪些是违规求助? 4688985
关于积分的说明 14857229
捐赠科研通 4696839
什么是DOI,文献DOI怎么找? 2541204
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851