Establishment of two pathomic-based machine learning models to predict CLCA1 expression in colon adenocarcinoma

腺癌 结肠腺癌 大肠腺癌 计算生物学 计算机科学 生物 生物信息学 癌症研究 遗传学 癌症
作者
Caiyun Yao,Mo Hu,Le‐Ting Zhou,Hui Chen,Yang Cao
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:20 (7): e0328220-e0328220
标识
DOI:10.1371/journal.pone.0328220
摘要

Chloride channel accessory 1 (CLCA1) is considered a potential prognostic biomarker for colon adenocarcinoma (COAD). The objective of this research was to develop two pathomics models to predict CLCA1 expression from hematoxylin-eosin (H&E) stained pathological images and to investigate the biological mechanisms linked to pathomics features by associating the pathomics model with transcriptomic data. The prognostic value of CLCA1 in COAD was assessed based on gene transcriptome expression data. The two pathomics models were constructed to predict CLCA1 expression in COAD based on pathological image features using the random forest (RF) and XGBoost machine learning algorithms. The RF pathomics model demonstrated superior predictive performance, achieving area under the curve (AUC) values of 0.846 and 0.776 in the training and validation cohorts, respectively, and was selected for further analysis. The ability of the pathomics model to predict overall survival (OS) in COAD was determined using univariate and multivariate Cox regression analyses. The possible biological mechanisms behind the pathomics model were explored by conducting gene set variation analysis (GSVA), immune infiltration assessment, and somatic mutation analysis. CLCA1 expression was downregulated in COAD patients and was associated with a poor prognosis (P = 0.008). Participants were categorized into high- and low-risk score groups based on the critical value of the risk score. High-risk scores were protective for OS in COAD in both univariate and multivariate Cox regression analyses. Meanwhile, GSVA enrichment analysis unveiled notable enrichment of pathways such as the epithelial-mesenchymal transition and vascular endothelial growth factor (VEGF) signaling in the low-risk score group. Two pathomics-based machine learning models were developed to predict CLCA1 expression from H&E stained images of COAD. A theoretical basis for interpreting the disease model was developed by comprehensively analyzing the pathomics-based models and transcriptomic data, facilitating further hypothesis-driven experimental research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茜茜王子发布了新的文献求助10
1秒前
FnDs完成签到,获得积分10
2秒前
苗条小霸王完成签到,获得积分10
2秒前
3秒前
菜鸟发布了新的文献求助10
3秒前
boshi发布了新的文献求助10
4秒前
传奇3应助忧心的不言采纳,获得10
5秒前
6秒前
9秒前
9秒前
景行行止完成签到 ,获得积分10
9秒前
9秒前
10秒前
勿明应助Nxxxxxx采纳,获得30
11秒前
Owen应助烂漫芷雪采纳,获得30
11秒前
12秒前
L.G.Y发布了新的文献求助30
12秒前
12秒前
科研通AI6应助boshi采纳,获得30
12秒前
Camellia发布了新的文献求助10
12秒前
111发布了新的文献求助10
14秒前
冷傲远航发布了新的文献求助10
14秒前
务实孤丝完成签到 ,获得积分10
15秒前
宝剑葫芦发布了新的文献求助10
15秒前
害怕的慕晴完成签到 ,获得积分10
15秒前
wuyu发布了新的文献求助10
16秒前
leslie完成签到 ,获得积分10
16秒前
清新的易真完成签到,获得积分10
17秒前
18秒前
18秒前
考拉发布了新的文献求助10
19秒前
汉堡包应助学术渣渣采纳,获得30
20秒前
JamesPei应助纯白采纳,获得10
20秒前
21秒前
22秒前
不想干活应助明理凝阳采纳,获得20
23秒前
23秒前
自觉紫安发布了新的文献求助10
24秒前
26秒前
善学以致用应助yw采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4524561
求助须知:如何正确求助?哪些是违规求助? 3965160
关于积分的说明 12289680
捐赠科研通 3629477
什么是DOI,文献DOI怎么找? 1997341
邀请新用户注册赠送积分活动 1033798
科研通“疑难数据库(出版商)”最低求助积分说明 923438