Establishment of two pathomic-based machine learning models to predict CLCA1 expression in colon adenocarcinoma

腺癌 结肠腺癌 大肠腺癌 计算生物学 计算机科学 生物 生物信息学 癌症研究 遗传学 癌症
作者
Caiyun Yao,Mo Hu,Le‐Ting Zhou,Hui Chen,Yang Cao
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:20 (7): e0328220-e0328220
标识
DOI:10.1371/journal.pone.0328220
摘要

Chloride channel accessory 1 (CLCA1) is considered a potential prognostic biomarker for colon adenocarcinoma (COAD). The objective of this research was to develop two pathomics models to predict CLCA1 expression from hematoxylin-eosin (H&E) stained pathological images and to investigate the biological mechanisms linked to pathomics features by associating the pathomics model with transcriptomic data. The prognostic value of CLCA1 in COAD was assessed based on gene transcriptome expression data. The two pathomics models were constructed to predict CLCA1 expression in COAD based on pathological image features using the random forest (RF) and XGBoost machine learning algorithms. The RF pathomics model demonstrated superior predictive performance, achieving area under the curve (AUC) values of 0.846 and 0.776 in the training and validation cohorts, respectively, and was selected for further analysis. The ability of the pathomics model to predict overall survival (OS) in COAD was determined using univariate and multivariate Cox regression analyses. The possible biological mechanisms behind the pathomics model were explored by conducting gene set variation analysis (GSVA), immune infiltration assessment, and somatic mutation analysis. CLCA1 expression was downregulated in COAD patients and was associated with a poor prognosis (P = 0.008). Participants were categorized into high- and low-risk score groups based on the critical value of the risk score. High-risk scores were protective for OS in COAD in both univariate and multivariate Cox regression analyses. Meanwhile, GSVA enrichment analysis unveiled notable enrichment of pathways such as the epithelial-mesenchymal transition and vascular endothelial growth factor (VEGF) signaling in the low-risk score group. Two pathomics-based machine learning models were developed to predict CLCA1 expression from H&E stained images of COAD. A theoretical basis for interpreting the disease model was developed by comprehensively analyzing the pathomics-based models and transcriptomic data, facilitating further hypothesis-driven experimental research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助123采纳,获得10
1秒前
顺心秋天发布了新的文献求助10
1秒前
Pluto发布了新的文献求助10
2秒前
漫天繁星发布了新的文献求助10
2秒前
好好休息完成签到 ,获得积分10
2秒前
大模型应助Nell采纳,获得10
2秒前
小小美少女完成签到 ,获得积分10
3秒前
情怀应助CHEEMS采纳,获得10
3秒前
wyz发布了新的文献求助10
4秒前
LBQ发布了新的文献求助10
4秒前
young发布了新的文献求助10
6秒前
Strolling完成签到,获得积分10
6秒前
浅浅发布了新的文献求助10
6秒前
CaiXiXi完成签到,获得积分10
6秒前
爆米花应助Dr.c采纳,获得30
7秒前
8秒前
核桃发布了新的文献求助10
8秒前
科研通AI6应助漫天繁星采纳,获得10
9秒前
小蘑菇应助无奈的黑猫采纳,获得30
10秒前
思源应助半只小猪采纳,获得10
10秒前
上官若男应助袁向薇采纳,获得10
11秒前
12秒前
12秒前
13秒前
16秒前
16秒前
大气元彤发布了新的文献求助10
17秒前
核桃发布了新的文献求助10
17秒前
香蕉觅云应助木子采纳,获得30
17秒前
我是老大应助受伤白安采纳,获得10
17秒前
18秒前
科研通AI6应助活力论文采纳,获得10
19秒前
GEJIA67发布了新的文献求助10
19秒前
撒旦asd发布了新的文献求助10
21秒前
黄河鲤鱼儿完成签到,获得积分10
21秒前
无极微光应助和谐青柏采纳,获得20
22秒前
22秒前
科目三应助Zhaobin采纳,获得10
23秒前
傲娇的曼凡完成签到,获得积分20
23秒前
23秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615265
求助须知:如何正确求助?哪些是违规求助? 4700164
关于积分的说明 14906941
捐赠科研通 4741703
什么是DOI,文献DOI怎么找? 2548025
邀请新用户注册赠送积分活动 1511771
关于科研通互助平台的介绍 1473781