Pan-Peptide Meta Learning for T-cell receptor–antigen binding recognition

T细胞受体 计算生物学 抗原 T细胞 计算机科学 免疫系统 表位 可解释性 生物 免疫学 人工智能 生物信息学
作者
Yicheng Gao,Yuli Gao,Yuxiao Fan,Chengyu Zhu,Zhiting Wei,Chi Zhou,Guohui Chuai,Qinchang Chen,He Zhang,Qi Liu
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:5 (3): 236-249 被引量:72
标识
DOI:10.1038/s42256-023-00619-3
摘要

The identification of the mechanisms by which T-cell receptors (TCRs) interact with human antigens provides a crucial opportunity to develop new vaccines, diagnostics and immunotherapies. However, the accurate prediction and recognition of TCR–antigen pairing represents a substantial computational challenge in immunology. Existing tools only learn the binding patterns of antigens from many known TCR binding repertoires and fail to recognize antigens that have never been presented to the immune system or for which only a few TCR binding repertoires are known. However, the binding specificity for neoantigens or exogenous peptides is crucial for immune studies and immunotherapy. Therefore, we developed Pan-Peptide Meta Learning (PanPep), a general and robust framework to recognize TCR–antigen binding, by combining the concepts of meta-learning and the neural Turing machine. The neural Turing machine adds external memory to avoid forgetting previously learned tasks, which is used here to accurately predict TCR binding specificity with any peptide, particularly unseen ones. We applied PanPep to various challenging clinical tasks, including (1) qualitatively measuring the clonal expansion of T cells; (2) efficiently sorting responsive T cells in tumour neoantigen therapy; and (3) accurately identifying immune-responsive TCRs in a large cohort from a COVID-19 study. Our comprehensive tests show that PanPep outperforms existing tools. PanPep also offers interpretability, revealing the nature of peptide and TCR interactions in 3D crystal structures. We believe PanPep can be a useful tool to decipher TCR–antigen interactions and that it has broad clinical applications. Machine learning methods can predict and recognize binding patterns between T-cell receptors and human antigens, but they struggle with antigens for which no or little data exist regarding interactions with the immune system. A new method called PanPep based on meta-learning can learn quickly on new binding prediction tasks and accurately predicts pairing between T-cell receptors and new antigens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
初七完成签到 ,获得积分10
1秒前
无花果应助眯眯眼的朋友采纳,获得10
1秒前
linhuafeng完成签到,获得积分10
2秒前
2秒前
清脆靳完成签到,获得积分10
5秒前
Lucas应助Eaves采纳,获得10
5秒前
jibo发布了新的文献求助10
6秒前
RPG完成签到,获得积分10
9秒前
9秒前
ash完成签到,获得积分10
9秒前
11秒前
梅子黄时雨完成签到,获得积分10
12秒前
百地希留耶完成签到 ,获得积分10
14秒前
zhangxinxin完成签到 ,获得积分10
15秒前
小白应助jibo采纳,获得20
15秒前
满意白卉完成签到 ,获得积分10
16秒前
math-naive完成签到,获得积分10
18秒前
18秒前
风犬少年完成签到,获得积分10
18秒前
19秒前
向响响完成签到 ,获得积分10
20秒前
20秒前
橙子完成签到 ,获得积分10
22秒前
青栞发布了新的文献求助10
24秒前
炙热的雨双完成签到 ,获得积分10
24秒前
12234hao完成签到,获得积分20
24秒前
24秒前
psj完成签到,获得积分10
25秒前
眼睛大板凳完成签到,获得积分10
26秒前
qsmei2020发布了新的文献求助10
26秒前
27秒前
12234hao发布了新的文献求助10
28秒前
胜胜糖完成签到 ,获得积分10
28秒前
jiajiajai完成签到,获得积分10
28秒前
大个应助大呆采纳,获得10
29秒前
FOODHUA完成签到,获得积分10
30秒前
30秒前
coldspringhao发布了新的文献求助10
31秒前
Eaves发布了新的文献求助10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782820
求助须知:如何正确求助?哪些是违规求助? 3328174
关于积分的说明 10235032
捐赠科研通 3043175
什么是DOI,文献DOI怎么找? 1670456
邀请新用户注册赠送积分活动 799718
科研通“疑难数据库(出版商)”最低求助积分说明 759010