An approach to extracting graph kernel features from functional brain networks and its applications to the analysis of the noisy EEG signals

计算机科学 脑电图 模式识别(心理学) 人工智能 图形 核(代数) 数学 理论计算机科学 神经科学 组合数学 心理学
作者
Yiran Peng,Taorong Qiu,Lingling Wei
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104269-104269 被引量:6
标识
DOI:10.1016/j.bspc.2022.104269
摘要

Since electroencephalographic data (EEG) usually carries a certain amount of noise, it is important to study a method that can propose an effective noise-adaptive feature from EEG signals and can be effectively used for problem-solving. Firstly, to address the problem that the application of noisy EEG in problem-solving based on functional brain networks is significantly worse, we study the extraction of global topological features, called graph kernel features, from functional brain networks with better noise immunity, and propose a method for extracting graph kernel features from networks based on neighborhood subgraph pairwise distances. Secondly, to address the problem of huge data of graph kernel features proposed from functional brain networks, dimensionality reduction of graph kernel features based on kernel principal component analysis is proposed. Finally, to verify that the graph kernel features can not only be effectively used for problem-solving, but also have good noise immunity, the research on fatigue driving and emotion recognition based on the graph kernel feature extraction side of the functional brain network is carried out, and the corresponding fatigue driving state recognition model and emotion state recognition model is constructed. By testing the simulated EEG noisy data on the real fatigue driving dataset and the publicly available emotion recognition dataset Seed with different methods, it is verified that the graph kernel features are effective in classifying the noisy EEG data and have a good generalization ability for different noises. • An approach of extracting the global topology features. • The extracted features have better adaptability to noisy environments. • The features provides some guarantees for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的函函应助麦麦欧巴采纳,获得10
1秒前
1秒前
芝麻糊应助虹虹采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
2秒前
rico应助科研通管家采纳,获得10
2秒前
曲夜白完成签到 ,获得积分10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
rico应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
aaa关闭了aaa文献求助
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
充电宝应助甜蜜的马里奥采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
putaotang发布了新的文献求助10
4秒前
4秒前
Verity发布了新的文献求助10
4秒前
李土豆发布了新的文献求助10
5秒前
叁金发布了新的文献求助10
5秒前
嘛籽m发布了新的文献求助10
5秒前
小吴发布了新的文献求助10
6秒前
6秒前
善学以致用应助vivi采纳,获得10
6秒前
8秒前
8秒前
ting20170208发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
思源应助佳节采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 15000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5702789
求助须知:如何正确求助?哪些是违规求助? 5148550
关于积分的说明 15237687
捐赠科研通 4857440
什么是DOI,文献DOI怎么找? 2606434
邀请新用户注册赠送积分活动 1557673
关于科研通互助平台的介绍 1515518