已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Composite predictive models for asthma exacerbations or asthma deterioration in pediatric asthmatic patients: A systematic review of the literature

哮喘 医学 哮喘恶化 预测建模 心理干预 重症监护医学 系统回顾 梅德林 儿科 内科学 机器学习 精神科 政治学 计算机科学 法学
作者
Carlos E. Rodríguez‐Martínez,Mónica P. Sossa‐Briceño,Erick Forno
出处
期刊:Pediatric Pulmonology [Wiley]
卷期号:58 (10): 2703-2718
标识
DOI:10.1002/ppul.26584
摘要

A variety of factors have shown to be useful in predicting which children are at high risk for future asthma exacerbations, some of them combined into composite predictive models. The objective of the present review was to systematically identify all the available published composite predictive models developed for predicting which children are at high risk for future asthma exacerbations or asthma deterioration. A systematic search of the literature was performed to identify studies in which a composite predictive model developed for predicting which children are at high risk for future asthma exacerbations or asthma deterioration was described. Methodological quality assessment was performed using accepted criteria for prediction rules and prognostic models. A total of 18 articles, describing a total of 17 composite predictive models were identified and included in the review. The number of predictors included in the models ranged from 2-149. Upon analyzing the content of the models, use of healthcare services for asthma and prescribed or dispensed asthma medications were the most frequently used items (in 8/17, 47.0% of the models). Seven (41.2%) models fulfilled all the quality criteria considered in our evaluation. The identified models may help clinicians dealing with asthmatic children to identify which children are at a higher risk for future asthma exacerbations or asthma deterioration, therefore targeting and/or reinforcing specific interventions for these children in an attempt to prevent exacerbations or deterioration of the disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
fox发布了新的文献求助10
3秒前
李健应助碗碗采纳,获得10
3秒前
在水一方应助舒心初晴采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
林声发布了新的文献求助10
7秒前
赘婿应助fox采纳,获得10
9秒前
核桃应助vicky采纳,获得20
12秒前
fsznc完成签到 ,获得积分0
12秒前
火火火木完成签到 ,获得积分10
14秒前
雨yu完成签到 ,获得积分10
20秒前
莉莉安完成签到 ,获得积分10
22秒前
酷波er应助nulinuli采纳,获得10
24秒前
咿咿呀呀发布了新的文献求助10
27秒前
28秒前
强健的迎波完成签到,获得积分10
30秒前
31秒前
林声完成签到,获得积分10
32秒前
32秒前
Ava应助名金学南采纳,获得30
35秒前
t忒对完成签到 ,获得积分20
36秒前
未夕晴发布了新的文献求助10
36秒前
Wang发布了新的文献求助10
38秒前
美好的惜天完成签到 ,获得积分10
38秒前
会化蝶发布了新的文献求助10
40秒前
43秒前
44秒前
碗碗发布了新的文献求助10
46秒前
jihenyouai0213完成签到,获得积分10
46秒前
菜菜发布了新的文献求助10
47秒前
俭朴梦菡完成签到,获得积分10
47秒前
49秒前
49秒前
xifanfan完成签到 ,获得积分10
51秒前
吃饱喝足就睡觉完成签到 ,获得积分10
52秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788098
求助须知:如何正确求助?哪些是违规求助? 3333579
关于积分的说明 10262519
捐赠科研通 3049385
什么是DOI,文献DOI怎么找? 1673537
邀请新用户注册赠送积分活动 802042
科研通“疑难数据库(出版商)”最低求助积分说明 760477