Machine learning assisted high-throughput computational screening of MOFs for the capture of chemical warfare agents from the air

吸附 纳米孔 偏苯三甲酸 金属有机骨架 多孔性 氢键 硫化氢 材料科学 纳米技术 化学工程 化学 分子 有机化学 工程类 硫黄
作者
Wenfei Wang,Lulu Zhang,Chengzhi Cai,Shuhua Li,Hong Liang,Yufang Wu,Zheng He,Zhiwei Qiao
出处
期刊:Separation and Purification Technology [Elsevier BV]
卷期号:325: 124546-124546 被引量:9
标识
DOI:10.1016/j.seppur.2023.124546
摘要

To effectively capture the low-concentration chemical warfare agents (CWAs) and their simulants which are extremely harmful to human health and environment, the properties of thousands of Computation-Ready, Experimental Metal-Organic Frameworks (CoRE-MOFs) for the adsorption and separation of four CWAs and simulants (dimethyl methyl phosphonate, soman, mustard gas, and 2-chloroethyl ethyl sulfide) from the air were calculated by high-throughput computational screening. To reasonably identify the top-performing MOFs, the trade-off between selectivity and adsorption capacity (TSN) was introduced to measure the properties of MOFs. Five machine learning algorithms were employed to quantitatively evaluate the structure-performance relationships of MOFs for the adsorption of CWAs and validate that Extreme Gradient Boosting algorithms had the best prediction accuracy. Furthermore, four MOF descriptors (henry coefficient, number of hydrogen bonds, porosity, and volumetric surface area) were found to have significant influence on the properties of MOFs. Finally, it was determined that the number of hydrogen bond acceptors was a key factor governing the co-adsorption of CWAs and their simulants, and the similarities of adsorbents with good adsorption performance included Zn for metal center, trimesic acid for organic linker, and srs for topology. The microscopic insights obtained from our bottom-up approach are very helpful for the development of MOFs and other nanoporous materials for the capture of CWAs from the air.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SUN完成签到,获得积分10
1秒前
1秒前
ZT完成签到,获得积分10
1秒前
高点点完成签到 ,获得积分10
1秒前
raffia发布了新的文献求助10
1秒前
Lyubb完成签到 ,获得积分10
2秒前
梅子完成签到 ,获得积分10
2秒前
3秒前
邵洋发布了新的文献求助10
3秒前
mengwensi完成签到,获得积分10
3秒前
友好靖巧发布了新的文献求助10
4秒前
搜集达人应助坚定的迎波采纳,获得80
4秒前
xxxxx发布了新的文献求助10
4秒前
天天快乐应助小七采纳,获得10
4秒前
SciGPT应助aaaaaa采纳,获得10
4秒前
W1ll完成签到,获得积分10
5秒前
天天快乐应助dai采纳,获得10
6秒前
bbo发布了新的文献求助10
6秒前
李爱国应助Nilzz采纳,获得10
6秒前
椰子树发布了新的文献求助10
7秒前
看文献的狗完成签到,获得积分10
7秒前
天天快乐应助风趣的老太采纳,获得10
7秒前
无情的宛亦完成签到,获得积分10
7秒前
蓝色的纪念完成签到,获得积分10
8秒前
zql74785应助高挑的萤采纳,获得10
8秒前
rainsy完成签到,获得积分10
8秒前
林曳完成签到 ,获得积分10
8秒前
jun完成签到,获得积分10
9秒前
思源应助彩云追月采纳,获得10
9秒前
好啊哈完成签到,获得积分10
9秒前
研友_VZG7GZ应助raffia采纳,获得10
9秒前
小布丁完成签到,获得积分10
9秒前
liupan002完成签到,获得积分10
10秒前
yyy完成签到,获得积分10
10秒前
10秒前
gfydsl完成签到,获得积分10
11秒前
该饮茶了完成签到,获得积分10
11秒前
11秒前
畅快箴完成签到,获得积分10
12秒前
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
新时代大学生思想政治教育主题研究 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834484
求助须知:如何正确求助?哪些是违规求助? 3376988
关于积分的说明 10496011
捐赠科研通 3096514
什么是DOI,文献DOI怎么找? 1704953
邀请新用户注册赠送积分活动 820381
科研通“疑难数据库(出版商)”最低求助积分说明 772011