Differentiable modelling to unify machine learning and physical models for geosciences

可解释性 机器学习 可微函数 人工智能 计算机科学 杠杆(统计) 外推法 人工神经网络 一致性(知识库) 数学 数学分析
作者
Chaopeng Shen,Alison P. Appling,Pierre Gentine,Toshiyuki Bandai,Hoshin V. Gupta,Alexandre M. Tartakovsky,Marco Baity‐Jesi,Fabrizio Fenicia,Daniel Kifer,Li Li,Xiaofeng Liu,Wei Ren,Yi Zheng,C. J. Harman,Martyn Clark,Matthew W. Farthing,Dapeng Feng,Praveen Kumar,Doaa Aboelyazeed,Farshid Rahmani
出处
期刊:Nature Reviews Earth & Environment [Nature Portfolio]
卷期号:4 (8): 552-567 被引量:169
标识
DOI:10.1038/s43017-023-00450-9
摘要

Process-based modelling offers interpretability and physical consistency in many domains of geosciences but struggles to leverage large datasets efficiently. Machine-learning methods, especially deep networks, have strong predictive skills yet are unable to answer specific scientific questions. In this Perspective, we explore differentiable modelling as a pathway to dissolve the perceived barrier between process-based modelling and machine learning in the geosciences and demonstrate its potential with examples from hydrological modelling. ‘Differentiable’ refers to accurately and efficiently calculating gradients with respect to model variables or parameters, enabling the discovery of high-dimensional unknown relationships. Differentiable modelling involves connecting (flexible amounts of) prior physical knowledge to neural networks, pushing the boundary of physics-informed machine learning. It offers better interpretability, generalizability, and extrapolation capabilities than purely data-driven machine learning, achieving a similar level of accuracy while requiring less training data. Additionally, the performance and efficiency of differentiable models scale well with increasing data volumes. Under data-scarce scenarios, differentiable models have outperformed machine-learning models in producing short-term dynamics and decadal-scale trends owing to the imposed physical constraints. Differentiable modelling approaches are primed to enable geoscientists to ask questions, test hypotheses, and discover unrecognized physical relationships. Future work should address computational challenges, reduce uncertainty, and verify the physical significance of outputs. Differentiable modelling is an approach that flexibly integrates the learning capability of machine learning with the interpretability of process-based models. This Perspective highlights the potential of differentiable modelling to improve the representation of processes, parameter estimation, and predictive accuracy in the geosciences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
新威宝贝发布了新的文献求助10
2秒前
难过帅哥发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
LaTeXer重新开启了WANGCHU文献应助
5秒前
活力的妙之完成签到 ,获得积分10
7秒前
shiizii应助hujlina采纳,获得10
8秒前
8秒前
伊星儿发布了新的文献求助30
9秒前
aldehyde应助嘉嘉琦采纳,获得10
11秒前
snowy发布了新的文献求助10
12秒前
orixero应助Skuld采纳,获得10
12秒前
13秒前
qigu发布了新的文献求助10
13秒前
景妙海完成签到 ,获得积分10
13秒前
徐徐完成签到,获得积分10
15秒前
Vxfhfdhkcds完成签到 ,获得积分10
15秒前
CAOHOU应助ljhtxf采纳,获得10
16秒前
18秒前
18秒前
Nathan发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
科研通AI2S应助qigu采纳,获得10
22秒前
难过帅哥完成签到,获得积分20
23秒前
23秒前
十六完成签到,获得积分20
24秒前
ZC发布了新的文献求助10
24秒前
25秒前
LaTeXer给5552222的求助进行了留言
25秒前
等于几都行完成签到 ,获得积分10
26秒前
26秒前
26秒前
SYLH应助小瓶采纳,获得30
26秒前
栖木木完成签到 ,获得积分10
26秒前
wing关注了科研通微信公众号
28秒前
RapGod完成签到,获得积分10
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4026632
求助须知:如何正确求助?哪些是违规求助? 3566261
关于积分的说明 11351565
捐赠科研通 3297426
什么是DOI,文献DOI怎么找? 1816014
邀请新用户注册赠送积分活动 890437
科研通“疑难数据库(出版商)”最低求助积分说明 813593