清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Differentiable modelling to unify machine learning and physical models for geosciences

可解释性 机器学习 可微函数 人工智能 计算机科学 杠杆(统计) 外推法 人工神经网络 一致性(知识库) 数学 数学分析
作者
Chaopeng Shen,Alison P. Appling,Pierre Gentine,Toshiyuki Bandai,Hoshin V. Gupta,Alexandre M. Tartakovsky,Marco Baity‐Jesi,Fabrizio Fenicia,Daniel Kifer,Li Li,Xiaofeng Liu,Wei Ren,Yi Zheng,C. J. Harman,Martyn Clark,Matthew W. Farthing,Dapeng Feng,Praveen Kumar,Doaa Aboelyazeed,Farshid Rahmani
出处
期刊:Nature Reviews Earth & Environment [Nature Portfolio]
卷期号:4 (8): 552-567 被引量:206
标识
DOI:10.1038/s43017-023-00450-9
摘要

Process-based modelling offers interpretability and physical consistency in many domains of geosciences but struggles to leverage large datasets efficiently. Machine-learning methods, especially deep networks, have strong predictive skills yet are unable to answer specific scientific questions. In this Perspective, we explore differentiable modelling as a pathway to dissolve the perceived barrier between process-based modelling and machine learning in the geosciences and demonstrate its potential with examples from hydrological modelling. ‘Differentiable’ refers to accurately and efficiently calculating gradients with respect to model variables or parameters, enabling the discovery of high-dimensional unknown relationships. Differentiable modelling involves connecting (flexible amounts of) prior physical knowledge to neural networks, pushing the boundary of physics-informed machine learning. It offers better interpretability, generalizability, and extrapolation capabilities than purely data-driven machine learning, achieving a similar level of accuracy while requiring less training data. Additionally, the performance and efficiency of differentiable models scale well with increasing data volumes. Under data-scarce scenarios, differentiable models have outperformed machine-learning models in producing short-term dynamics and decadal-scale trends owing to the imposed physical constraints. Differentiable modelling approaches are primed to enable geoscientists to ask questions, test hypotheses, and discover unrecognized physical relationships. Future work should address computational challenges, reduce uncertainty, and verify the physical significance of outputs. Differentiable modelling is an approach that flexibly integrates the learning capability of machine learning with the interpretability of process-based models. This Perspective highlights the potential of differentiable modelling to improve the representation of processes, parameter estimation, and predictive accuracy in the geosciences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Virtual应助淡水美人鱼采纳,获得20
刚刚
爱静静应助科研通管家采纳,获得10
7秒前
南宫士晋完成签到 ,获得积分10
24秒前
poki完成签到 ,获得积分10
28秒前
kenchilie完成签到 ,获得积分10
42秒前
lilylwy完成签到 ,获得积分0
59秒前
老高完成签到 ,获得积分10
1分钟前
Jason完成签到 ,获得积分10
1分钟前
幻梦如歌完成签到,获得积分10
1分钟前
1分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
xiw完成签到,获得积分10
2分钟前
无端发布了新的文献求助10
2分钟前
无端完成签到 ,获得积分20
3分钟前
Jayzie完成签到 ,获得积分10
3分钟前
雪白小丸子完成签到,获得积分10
3分钟前
jh完成签到 ,获得积分10
3分钟前
滕皓轩完成签到 ,获得积分20
4分钟前
科研通AI2S应助无端采纳,获得10
4分钟前
科研通AI2S应助无端采纳,获得10
4分钟前
MchemG应助无端采纳,获得10
4分钟前
MchemG应助无端采纳,获得10
4分钟前
Virtual应助无端采纳,获得10
4分钟前
Virtual应助无端采纳,获得10
4分钟前
carolsoongmm完成签到,获得积分10
4分钟前
孟寐以求完成签到 ,获得积分10
4分钟前
沉默小虾米完成签到 ,获得积分10
5分钟前
LINDENG2004完成签到 ,获得积分10
5分钟前
彩色的芷容完成签到 ,获得积分10
5分钟前
华仔应助小云采纳,获得10
6分钟前
沙海沉戈完成签到,获得积分0
7分钟前
yingzaifeixiang完成签到 ,获得积分10
7分钟前
冰凌心恋完成签到,获得积分10
7分钟前
CHEN完成签到 ,获得积分10
7分钟前
hzs完成签到,获得积分10
8分钟前
蔡翌文完成签到 ,获得积分10
8分钟前
Akim应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
咯咯咯完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4458190
求助须知:如何正确求助?哪些是违规求助? 3922778
关于积分的说明 12171863
捐赠科研通 3574277
什么是DOI,文献DOI怎么找? 1963548
邀请新用户注册赠送积分活动 1002586
科研通“疑难数据库(出版商)”最低求助积分说明 897260