Understanding dockless bike-sharing spatiotemporal travel patterns: Evidence from ten cities in China

中心性 中间性中心性 市中心 地理 经济地理学 中国 运输工程 人气 亲密度 分布(数学) 比例(比率) 大都市区 区域科学 地图学 统计 心理学 工程类 数学分析 考古 社会心理学 数学
作者
Fanyun Meng,Lili Zheng,Tongqiang Ding,Zhuorui Wang,Yanlin Zhang,Wenqing Li
出处
期刊:Computers, Environment and Urban Systems [Elsevier]
卷期号:104: 102006-102006 被引量:27
标识
DOI:10.1016/j.compenvurbsys.2023.102006
摘要

Dockless bike-sharing (DBS) has gained popularity in many cities in recent years. However, little attention has been given to the commonalities and differences in DBS travel patterns from multiple cities. This study aims to fill this gap by comparing DBS travel patterns in ten Chinese cities of varying scales. It collected data from these cities and analysed them from two perspectives: service usage characteristics and complex network properties. The results reveal a coexistence of similarities and differences in DBS travel patterns across different cities. The ten major cities show significant similarities in temporal distribution, with a similarity coefficient exceeding 0.7. Southern cities have a higher percentage of night riding compared to their northern counterparts. Moreover, over 85% of the travel distances are within 2 km. Concerning spatial distribution, all ten cities demonstrate an imbalanced demand distribution during peak hours, particularly in downtown areas, exhibiting evident tidal patterns. Network analysis outcomes demonstrate that the DBS networks in all ten cities possess small-world and scale-free properties. Furthermore, nodes with high degree centrality and closeness centrality are predominantly concentrated in downtown areas, displaying a diminishing trend from the city centre to the outskirts and showcasing strong global spatial autocorrelation. The betweenness centrality exhibits a property of random distribution. Nodes with high PageRank values are mainly concentrated in the city centre and around metro stations. The findings offer valuable insights for transportation planners and managers seeking to enhance their understanding of DBS systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
solitude发布了新的文献求助10
刚刚
明理毛衣发布了新的文献求助20
刚刚
烟花应助樱悼柳雪采纳,获得10
1秒前
情怀应助bruce采纳,获得10
1秒前
2秒前
小鹿发布了新的文献求助10
3秒前
我是老大应助李怼怼采纳,获得10
3秒前
海鲭发布了新的文献求助10
3秒前
两周前完成签到,获得积分10
3秒前
科研通AI6应助称心誉采纳,获得10
3秒前
清秀曼彤完成签到,获得积分20
4秒前
SY完成签到 ,获得积分10
4秒前
5秒前
5秒前
脑洞疼应助彩色的续采纳,获得10
6秒前
皮肤科王东明完成签到,获得积分10
7秒前
7秒前
清秀的小刺猬应助末末采纳,获得70
7秒前
rose关注了科研通微信公众号
7秒前
7秒前
呆萌的菠萝应助山茶花采纳,获得10
7秒前
寒霜扬名完成签到 ,获得积分10
7秒前
8秒前
8秒前
Simonn29完成签到,获得积分10
9秒前
NexusExplorer应助hbzjt2012采纳,获得30
9秒前
9秒前
麻瓜不是瓜完成签到 ,获得积分20
9秒前
10秒前
11秒前
11秒前
11秒前
fufu完成签到,获得积分10
11秒前
12秒前
六六哈发布了新的文献求助10
12秒前
CodeCraft应助可燃冰采纳,获得10
12秒前
Wenjie发布了新的文献求助10
12秒前
xue发布了新的文献求助10
12秒前
wanci应助JHM采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662339
求助须知:如何正确求助?哪些是违规求助? 4841915
关于积分的说明 15099227
捐赠科研通 4820774
什么是DOI,文献DOI怎么找? 2580225
邀请新用户注册赠送积分活动 1534281
关于科研通互助平台的介绍 1492959