Reviewing Federated Learning Aggregation Algorithms; Strategies, Contributions, Limitations and Future Perspectives

计算机科学 背景(考古学) 实施 机器学习 人工智能 过程(计算) 领域(数学) 联合学习 算法 数据科学 软件工程 古生物学 数学 纯数学 生物 操作系统
作者
Mohammad Moshawrab,Mehdi Adda,Abdenour Bouzouane,Hussein Ibrahim,Ali Raad
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (10): 2287-2287 被引量:66
标识
DOI:10.3390/electronics12102287
摘要

The success of machine learning (ML) techniques in the formerly difficult areas of data analysis and pattern extraction has led to their widespread incorporation into various aspects of human life. This success is due in part to the increasing computational power of computers and in part to the improved ability of ML algorithms to process large amounts of data in various forms. Despite these improvements, certain issues, such as privacy, continue to hinder the development of this field. In this context, a privacy-preserving, distributed, and collaborative machine learning technique called federated learning (FL) has emerged. The core idea of this technique is that, unlike traditional machine learning, user data is not collected on a central server. Nevertheless, models are sent to clients to be trained locally, and then only the models themselves, without associated data, are sent back to the server to combine the different locally trained models into a single global model. In this respect, the aggregation algorithms play a crucial role in the federated learning process, as they are responsible for integrating the knowledge of the participating clients, by integrating the locally trained models to train a global one. To this end, this paper explores and investigates several federated learning aggregation strategies and algorithms. At the beginning, a brief summary of federated learning is given so that the context of an aggregation algorithm within a FL system can be understood. This is followed by an explanation of aggregation strategies and a discussion of current aggregation algorithms implementations, highlighting the unique value that each brings to the knowledge. Finally, limitations and possible future directions are described to help future researchers determine the best place to begin their own investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微雨若,,完成签到 ,获得积分10
刚刚
qc完成签到 ,获得积分10
刚刚
1秒前
1秒前
思源应助无私尔风采纳,获得10
1秒前
1秒前
共享精神应助daqing1725采纳,获得10
1秒前
风痕发布了新的文献求助10
2秒前
dcgz发布了新的文献求助10
2秒前
Glorious完成签到,获得积分10
3秒前
一半可完成签到,获得积分20
3秒前
3秒前
乐乐应助不知道取什么采纳,获得10
4秒前
4秒前
ggboom完成签到,获得积分10
5秒前
5秒前
等流心完成签到 ,获得积分10
5秒前
荼蘼如雪发布了新的文献求助10
5秒前
今后应助gugugaga采纳,获得10
5秒前
隐形曼青应助多情如容采纳,获得10
5秒前
5秒前
5秒前
violetlishu完成签到,获得积分0
7秒前
8秒前
7890733发布了新的文献求助10
8秒前
lonelycube完成签到,获得积分10
8秒前
完美元柏发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助50
8秒前
在水一方应助yiyi采纳,获得10
8秒前
9秒前
dew发布了新的文献求助10
10秒前
CodeCraft应助WGQ采纳,获得10
10秒前
等流心关注了科研通微信公众号
11秒前
11秒前
11秒前
11秒前
科研小亮发布了新的文献求助10
12秒前
明亮的安波完成签到,获得积分10
12秒前
氢氦锂铍硼完成签到,获得积分20
12秒前
义气幻竹发布了新的文献求助30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070231
求助须知:如何正确求助?哪些是违规求助? 4291424
关于积分的说明 13370277
捐赠科研通 4111739
什么是DOI,文献DOI怎么找? 2251660
邀请新用户注册赠送积分活动 1256787
关于科研通互助平台的介绍 1189405