自动汇总
计算机科学
一致性(知识库)
自然语言处理
任务(项目管理)
人工智能
自编码
情报检索
深度学习
工程类
系统工程
作者
A. Vivek,V. Susheela Devi
出处
期刊:Communications in computer and information science
日期:2023-01-01
卷期号:: 313-323
标识
DOI:10.1007/978-981-99-1639-9_26
摘要
In this project we introduce SumBART - an improved version of BART with better performance in abstractive text summarization task. BART is a denoising autoencoder model used for language modelling tasks. The existing BART model produces summaries with good grammatical accuracy but it does have certain amount of factual inconsistency. This issue of factual inconsistency is what makes text summarization models unfit to use in many real world applications. We are introducing 3 modifications on the existing model that improves rouge scores as well as factual consistency.
科研通智能强力驱动
Strongly Powered by AbleSci AI