已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Towards a Unified Middle Modality Learning for Visible-Infrared Person Re-Identification

模态(人机交互) 人工智能 计算机科学 模式 模式识别(心理学) 计算机视觉 社会学 社会科学
作者
Yukang Zhang,Yan Yan,Yang Lu,Hanzi Wang
标识
DOI:10.1145/3474085.3475250
摘要

Visible-infrared person re-identification (VI-ReID) aims to search identities of pedestrians across different spectra. In this task, one of the major challenges is the modality discrepancy between the visible (VIS) and infrared (IR) images. Some state-of-the-art methods try to design complex networks or generative methods to mitigate the modality discrepancy while ignoring the highly non-linear relationship between the two modalities of VIS and IR. In this paper, we propose a non-linear middle modality generator (MMG), which helps to reduce the modality discrepancy. Our MMG can effectively project VIS and IR images into a unified middle modality image (UMMI) space to generate middle-modality (M-modality) images. The generated M-modality images and the original images are fed into the backbone network to reduce the modality discrepancy.Furthermore, in order to pull together the two types of M-modality images generated from the VIS and IR images in the UMMI space, we propose a distribution consistency loss (DCL) to make the modality distribution of the generated M-modalities images as consistent as possible. Finally, we propose a middle modality network (MMN) to further enhance the discrimination and richness of features in an explicit manner. Extensive experiments have been conducted to validate the superiority of MMN for VI-ReID over some state-of-the-art methods on two challenging datasets. The gain of MMN is more than 11.1% and 8.4% in terms of Rank-1 and mAP, respectively, even compared with the latest state-of-the-art methods on the SYSU-MM01 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助渊山采纳,获得10
3秒前
4秒前
4秒前
keke关注了科研通微信公众号
5秒前
科研通AI5应助杜杜采纳,获得10
5秒前
5秒前
为什么不能免费完成签到,获得积分10
7秒前
xTATx发布了新的文献求助10
8秒前
10秒前
xioahui完成签到,获得积分10
10秒前
11秒前
11秒前
黑米粥发布了新的文献求助10
13秒前
平常雨泽发布了新的文献求助10
15秒前
15秒前
15秒前
华仔应助HJJHJH采纳,获得10
15秒前
科研通AI5应助John采纳,获得10
16秒前
16秒前
biubiu发布了新的文献求助10
16秒前
sherry完成签到,获得积分20
18秒前
xioahui发布了新的文献求助10
18秒前
小二郎应助研友_LX01RL采纳,获得10
19秒前
19秒前
852应助swan采纳,获得10
20秒前
20秒前
杜杜发布了新的文献求助10
20秒前
飞翔的蒲公英完成签到,获得积分10
21秒前
keke发布了新的文献求助10
21秒前
23秒前
23秒前
腼腆的从安完成签到,获得积分10
25秒前
25秒前
26秒前
27秒前
加油发布了新的文献求助10
29秒前
30秒前
30秒前
32秒前
34秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815203
求助须知:如何正确求助?哪些是违规求助? 3359136
关于积分的说明 10400343
捐赠科研通 3076760
什么是DOI,文献DOI怎么找? 1689995
邀请新用户注册赠送积分活动 813529
科研通“疑难数据库(出版商)”最低求助积分说明 767674