A review of the application of machine learning in molecular imaging

分子成像 医学物理学 计算机科学 医学影像学 人工智能 成像技术 大数据 数据科学 领域(数学) 医学 数据挖掘 放射科 生物 生物技术 数学 纯数学 体内
作者
Lin Yin,Zhen Cao,Kun Wang,Jie Tian,Xing Yang,Jianhua Zhang
出处
期刊:Annals of Translational Medicine [AME Publishing Company]
卷期号:9 (9): 825-825 被引量:7
标识
DOI:10.21037/atm-20-5877
摘要

Abstract: Molecular imaging (MI) is a science that uses imaging methods to reflect the changes of molecular level in living state and conduct qualitative and quantitative studies on its biological behaviors in imaging. Optical molecular imaging (OMI) and nuclear medical imaging are two key research fields of MI. OMI technology refers to the optical information generated by the imaging target (such as tumors) due to drug intervention and other reasons. By collecting the optical information, researchers can track the motion trajectory of the imaging target at the molecular level. Owing to its high specificity and sensitivity, OMI has been widely used in preclinical research and clinical surgery. Nuclear medical imaging mainly detects ionizing radiation emitted by radioactive substances. It can provide molecular information for early diagnosis, effective treatment and basic research of diseases, which has become one of the frontiers and hot topics in the field of medicine in the world today. Both OMI and nuclear medical imaging technology require a lot of data processing and analysis. In recent years, artificial intelligence technology, especially neural network-based machine learning (ML) technology, has been widely used in MI because of its powerful data processing capability. It provides a feasible strategy to deal with large and complex data for the requirement of MI. In this review, we will focus on the applications of ML methods in OMI and nuclear medical imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
坚定的乐天完成签到,获得积分10
刚刚
bbihk完成签到,获得积分10
2秒前
CipherSage应助haha采纳,获得10
2秒前
zz发布了新的文献求助10
3秒前
领导范儿应助kk采纳,获得30
3秒前
little_island完成签到,获得积分20
3秒前
foreverchoi完成签到,获得积分10
4秒前
林子青发布了新的文献求助20
4秒前
锦七完成签到,获得积分10
4秒前
water treat发布了新的文献求助10
4秒前
老实的栾完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
一路向南完成签到 ,获得积分10
6秒前
runli发布了新的文献求助10
6秒前
科研通AI5应助万英雄采纳,获得10
7秒前
溜溜完成签到,获得积分10
7秒前
7秒前
7秒前
little_island发布了新的文献求助10
7秒前
8秒前
华仔应助小尾巴采纳,获得10
8秒前
晓晓发布了新的文献求助10
8秒前
9秒前
文静的白开水完成签到,获得积分10
9秒前
BoBo发布了新的文献求助10
9秒前
长情访梦完成签到,获得积分10
9秒前
852应助阿杜阿杜采纳,获得10
10秒前
KevinDante发布了新的文献求助10
10秒前
10秒前
传奇3应助吉师大_科研采纳,获得10
10秒前
可耐的道之完成签到 ,获得积分20
10秒前
10秒前
研友_Z33zkZ完成签到,获得积分10
11秒前
NexusExplorer应助小鹿5460采纳,获得10
11秒前
xzDoctor发布了新的文献求助10
11秒前
科研通AI5应助长孙归尘采纳,获得10
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835693
求助须知:如何正确求助?哪些是违规求助? 3378029
关于积分的说明 10501900
捐赠科研通 3097669
什么是DOI,文献DOI怎么找? 1705937
邀请新用户注册赠送积分活动 820760
科研通“疑难数据库(出版商)”最低求助积分说明 772260