聚类分析
组学
计算机科学
数据挖掘
软件
计算生物学
数据科学
生物信息学
生物
机器学习
程序设计语言
作者
Ali Rahnavard,Suvo Chatterjee,Bahar Sayoldin,Keith A. Crandall,Fasil Tekola‐Ayele,Himel Mallick
出处
期刊:Bioinformatics
[Oxford University Press]
日期:2021-04-26
卷期号:37 (20): 3588-3594
被引量:9
标识
DOI:10.1093/bioinformatics/btab317
摘要
Abstract Motivation The discovery of biologically interpretable and clinically actionable communities in heterogeneous omics data is a necessary first step toward deriving mechanistic insights into complex biological phenomena. Here, we present a novel clustering approach, omeClust, for community detection in omics profiles by simultaneously incorporating similarities among measurements and the overall complex structure of the data. Results We show that omeClust outperforms published methods in inferring the true community structure as measured by both sensitivity and misclassification rate on simulated datasets. We further validated omeClust in diverse, multiple omics datasets, revealing new communities and functionally related groups in microbial strains, cell line gene expression patterns and fetal genomic variation. We also derived enrichment scores attributable to putatively meaningful biological factors in these datasets that can serve as hypothesis generators facilitating new sets of testable hypotheses. Availability and implementation omeClust is open-source software, and the implementation is available online at http://github.com/omicsEye/omeClust. Supplementary information Supplementary data are available at Bioinformatics online.
科研通智能强力驱动
Strongly Powered by AbleSci AI