亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Stereo Video Reconstruction Without Explicit Depth Maps for Endoscopic Surgery

计算机科学 人工智能 任务(项目管理) 计算机视觉 头戴式耳机 帧(网络) 管理 电信 经济
作者
Annika Brundyn,Jesse Swanson,Kyunghyun Cho,Doug Kondziolka,Eric K. Oermann
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2109.08227
摘要

We introduce the task of stereo video reconstruction or, equivalently, 2D-to-3D video conversion for minimally invasive surgical video. We design and implement a series of end-to-end U-Net-based solutions for this task by varying the input (single frame vs. multiple consecutive frames), loss function (MSE, MAE, or perceptual losses), and network architecture. We evaluate these solutions by surveying ten experts - surgeons who routinely perform endoscopic surgery. We run two separate reader studies: one evaluating individual frames and the other evaluating fully reconstructed 3D video played on a VR headset. In the first reader study, a variant of the U-Net that takes as input multiple consecutive video frames and outputs the missing view performs best. We draw two conclusions from this outcome. First, motion information coming from multiple past frames is crucial in recreating stereo vision. Second, the proposed U-Net variant can indeed exploit such motion information for solving this task. The result from the second study further confirms the effectiveness of the proposed U-Net variant. The surgeons reported that they could successfully perceive depth from the reconstructed 3D video clips. They also expressed a clear preference for the reconstructed 3D video over the original 2D video. These two reader studies strongly support the usefulness of the proposed task of stereo reconstruction for minimally invasive surgical video and indicate that deep learning is a promising approach to this task. Finally, we identify two automatic metrics, LPIPS and DISTS, that are strongly correlated with expert judgement and that could serve as proxies for the latter in future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zeeki完成签到 ,获得积分10
32秒前
1分钟前
1分钟前
1分钟前
1分钟前
Axel发布了新的文献求助10
1分钟前
Kevin完成签到,获得积分10
1分钟前
zz发布了新的文献求助10
1分钟前
1分钟前
1分钟前
烟花应助zz采纳,获得10
2分钟前
桥西小河完成签到 ,获得积分10
2分钟前
nojego完成签到,获得积分10
2分钟前
Galri完成签到 ,获得积分10
3分钟前
儒雅海秋完成签到,获得积分10
3分钟前
4分钟前
4分钟前
zz发布了新的文献求助10
4分钟前
小马甲应助zz采纳,获得10
4分钟前
高高的绮烟关注了科研通微信公众号
5分钟前
6分钟前
6分钟前
无情的友容完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
8分钟前
Axel完成签到,获得积分10
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
9分钟前
9分钟前
10分钟前
10分钟前
科研通AI5应助尼克狐尼克采纳,获得10
10分钟前
11分钟前
李健应助科研通管家采纳,获得10
11分钟前
英俊的铭应助科研通管家采纳,获得30
11分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4377390
求助须知:如何正确求助?哪些是违规求助? 3872966
关于积分的说明 12068263
捐赠科研通 3516067
什么是DOI,文献DOI怎么找? 1929471
邀请新用户注册赠送积分活动 971052
科研通“疑难数据库(出版商)”最低求助积分说明 869732