数学
次线性函数
分数拉普拉斯
无穷
正多边形
泊松分布
非线性系统
数学分析
组合数学
数学物理
纯数学
几何学
物理
量子力学
统计
作者
Ruiting Jiang,Fangping Guo,Chengbo Zhai
摘要
In this paper, we consider the following nonhomogeneous fractional Schrödinger–Poisson equations: where λ ≥ 0, s ∈ (3/4, 1], t ∈ (0, 1], (− Δ) s denotes the fractional Laplacian. g ( x , u ) is of general 3‐superlinear growth at infinity, f ( x , u ) satisfies sublinear growth conditions. By means of some critical point theorems, we obtain the following results: (1) the existence of at least one solution for , (2) the existence of at least two nontrivial solutions for λ > 0 small enough, (3) the infinitely many solutions when f ( x , u ) is odd in u and λ > 0.
科研通智能强力驱动
Strongly Powered by AbleSci AI