构造(python库)
启发式
项目反应理论
度量(数据仓库)
计算机科学
考试(生物学)
认知
项目库
索引(排版)
计算机化自适应测验
机器学习
人工智能
统计
数据挖掘
心理测量学
心理学
数学
古生物学
神经科学
生物
万维网
程序设计语言
作者
Robert A. Henson,Jeff Douglas
标识
DOI:10.1177/0146621604272623
摘要
Although cognitive diagnostic models (CDMs) can be useful in the analysis and interpretation of existing tests, little has been developed to specify how one might construct a good test using aspects of the CDMs. This article discusses the derivation of a general CDM index based on Kullback-Leibler information that will serve as a measure of how informative an item is for the classification of examinees. The effectiveness of the index is examined for items calibrated using the deterministic input noisy “and” gate model (DINA) and the reparameterized unified model (RUM) by implementing a simple heuristic to construct a test from an item bank. When compared to randomly constructed tests from the same item bank, the heuristic shows significant improvement in classification rates.
科研通智能强力驱动
Strongly Powered by AbleSci AI