Adhesion of spheres: The JKR-DMT transition using a dugdale model

材料科学 应变能释放率 强度因子 半径 机械 接触力学 复合材料 压力(语言学) 球体 流离失所(心理学) 粘附 断裂力学 物理 热力学 有限元法 天文 心理治疗师 哲学 语言学 计算机科学 计算机安全 心理学
作者
D. Maugis
出处
期刊:Journal of Colloid and Interface Science [Elsevier BV]
卷期号:150 (1): 243-269 被引量:1906
标识
DOI:10.1016/0021-9797(92)90285-t
摘要

In the Johnson-Kendall-Roberts (JKR) approximation, adhesion forces outside the area of contact are neglected and elastic stresses at the edge of the contact are infinite, as in linear elastic fracture mechanics. On the other hand, in the Derjaguin-Muller-Toporov (DMT) approximation, the adhesion forces are taken into account, but the profile is assumed to be Hertzian, as if adhesion forces Could not deform the surfaces. To avoid self consistent numerical calculations based on a specific interaction model (Lennard-Jones potential for example) we have used a Dugdale model, which allows analytical solutions. The adhesion forces are assumed to have a constant value σO, the theoretical stress, over a length d at the crack tip. This internal loading acting in the air gap (the external crack) leads to a stress intensity factor Km, which is cancelled with the stress intensity factor KI due to the external loading. This cancellation suppresses the stress singularities, ensures the continuity of stresses, and fixes the radius c and the crack opening displacement δt. The energy release rate G is computed by the J-integral and the equilibrium is given by G = w. The equilibrium curves a(P), a(δ), and P(σ), the adherence forces at fixed load or fixed grips, the profiles, and the stress distributions can therefore be drawn as a function of a single parameter λ. When λ increases from zero to infinity there is a continuous transition from the DMT approximation to the JKR approximation. Furthermore the value of G for the DMT approximation is derived. It is shown that it is not physically consistent to have tensile stresses in the area of contact and no adhesion forces outside or no tensile stresses in the area of contact and adhesion forces outside. In the JKR approximation the distribution of adhesion forces is reduced to a singular stress at r = a+. The total attraction force outside the contact being zero, the integral of stresses in the contact is equal to the applied load P and negative applied loads are supported by the elastic restoring forces. In the DMT approximation the adhesion stresses tend toward zero to have a continuity with the stress at r = a−, but their integral is finite and the total attraction force outside the contact is 2πwR. In the area of contact the distribution of stresses is Hertzian, and their integral is P + 27πwR. Negative applied loads are sustained by adhesion forces outside the contact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
struggling发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
不愿透露姓名科研人完成签到 ,获得积分10
4秒前
4秒前
鸣笛应助孙朱珠采纳,获得50
5秒前
Zhy完成签到 ,获得积分10
7秒前
万能图书馆应助struggling采纳,获得10
9秒前
10秒前
安琪琪完成签到 ,获得积分10
11秒前
14秒前
zhw发布了新的文献求助10
16秒前
a3979107发布了新的文献求助100
18秒前
传奇3应助wyq采纳,获得10
19秒前
21秒前
22秒前
toxic完成签到,获得积分10
27秒前
2758543477发布了新的文献求助10
28秒前
李爱国应助常弦采纳,获得10
28秒前
那英东发布了新的文献求助10
28秒前
34秒前
玉玉症高手完成签到,获得积分20
36秒前
39秒前
曾经二娘发布了新的文献求助10
43秒前
量子星尘发布了新的文献求助10
45秒前
CipherSage应助野生菜狗采纳,获得10
46秒前
48秒前
49秒前
星辰大海应助arzu采纳,获得10
50秒前
zhen完成签到,获得积分20
51秒前
52秒前
54秒前
小天发布了新的文献求助30
55秒前
55秒前
常弦发布了新的文献求助10
57秒前
量子星尘发布了新的文献求助20
1分钟前
大布发布了新的文献求助10
1分钟前
1分钟前
彳亍1117应助666采纳,获得20
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4314803
求助须知:如何正确求助?哪些是违规求助? 3833928
关于积分的说明 11993649
捐赠科研通 3474204
什么是DOI,文献DOI怎么找? 1905178
邀请新用户注册赠送积分活动 951812
科研通“疑难数据库(出版商)”最低求助积分说明 853383