材料科学
产量(工程)
电化学
可再生能源
化学工程
电化学能量转换
催化作用
氢
法拉第效率
动能
曲面(拓扑)
能量转换
铂金
纳米技术
动力学
兴奋剂
工作(物理)
制氢
能量转换效率
反应速率常数
过电位
工艺工程
储能
脉搏(音乐)
相干势近似
电极
作者
Mei Yi,Pengfei Wang,Rongguang Shi,Guo Wei,Dongqi Yang,Panpan Li,Guihua Yu,Zhaoyu Jin
标识
DOI:10.1002/anie.202521345
摘要
Abstract Harnessing renewable electricity to transform abundant environmental resources into fertilizers is central to sustainable development. Electrochemical nitrate‐to‐ammonia conversion provides a promising route, yet its efficiency is constrained by the elusive surface hydrogenation dynamics governing multi‐step *NO x reduction. Here, a cooperative descriptor (Ψ) derived from large‐language‐models‐assisted mining and energetic analysis successfully identifies NiCu single‐atom alloys (SAAs) as optimal catalysts. Pulse electrodeposition delivers atomically dispersed alloys with tunable structures, achieving a maximum Faradaic efficiency (FE) of ∼95% and yield rate (YR) of ∼11.4 mg h −1 cm −2 . In situ surface‐interrogation scanning electrochemical microscopy (SI‐SECM) provides quantitative information on the time‐resolved surface‐active hydrogen (*H) generation‐consumption and *NO x hydrogenation rate constants (NiCu > CoCu ≫ MnCu ≈ FeCu > Cu), directly aligning surface kinetics with selectivity. Theoretical investigations further confirmed that Ni doping lowers the barriers for *H formation and *NO x hydrogenation. A plasma‐electrochemical‐CO 2 capture system demonstrated continuous “air‐to‐fertilizer” conversion with reduced energy consumption and potential net‐negative emissions. These results establish a transferable design rule that bridges theoretical descriptors with operando hydrogenation dynamics, providing a mechanistic foundation and practical pathway toward scalable, zero‐carbon fertilizer production.
科研通智能强力驱动
Strongly Powered by AbleSci AI